Phylogeographic Data (phylogeographic + data)

Distribution by Scientific Domains


Selected Abstracts


CALIBRATING A MOLECULAR CLOCK FROM PHYLOGEOGRAPHIC DATA: MOMENTS AND LIKELIHOOD ESTIMATORS

EVOLUTION, Issue 10 2003
Michael J. Hickerson
Abstract We present moments and likelihood methods that estimate a DNA substitution rate from a group of closely related sister species pairs separated at an assumed time, and we test these methods with simulations. The methods also estimate ancestral population size and can test whether there is a significant difference among the ancestral population sizes of the sister species pairs. Estimates presented in the literature often ignore the ancestral coalescent prior to speciation and therefore should be biased upward. The simulations show that both methods yield accurate estimates given sample sizes of five or more species pairs and that better likelihood estimates are obtained if there is no significant difference among ancestral population sizes. The model presented here indicates that the larger than expected variation found in multitaxa datasets can be explained by variation in the ancestral coalescence and the Poisson mutation process. In this context, observed variation can often be accounted for by variation in ancestral population sizes rather than invoking variation in other parameters, such as divergence time or mutation rate. The methods are applied to data from two groups of species pairs (sea urchins and Alpheus snapping shrimp) that are thought to have separated by the rise of Panama three million years ago. [source]


HABITAT FRAGMENTATION AND BIODIVERSITY: TESTING FOR THE EVOLUTIONARY EFFECTS OF REFUGIA

EVOLUTION, Issue 6 2004
Jon R. Bridle
Abstract Concordant areas of endemism among taxa have important implications both for understanding mechanisms of speciation and for framing conservation priorities. Here we discuss the need for careful testing of phylogeographic data for evidence of such concordance, with particular reference to the Indonesian island of Sulawesi. This is because there are good reasons to question whether concordance between taxa is likely to be a common pattern, and because of the serious implications of incorrectly concluding that the biodiversity of a given area can be partitioned in this way. [source]


Glacial refugia of temperate trees in Europe: insights from species distribution modelling

JOURNAL OF ECOLOGY, Issue 6 2008
Jens-Christian Svenning
Summary 1The Pleistocene is an important period for assessing the impact of climate change on biodiversity. During the Last Glacial Maximum (LGM; 21 000 years ago), large glaciers and permafrost reached far south in Europe. Trees are traditionally thought to have survived only in scattered Mediterranean refugia (southern refugia hypothesis), but a recent proposal suggests that trees may have been much more widely and northerly distributed (northern refugia hypothesis). 2In this study, the southern vs. northern refugia hypotheses were investigated by estimating the potential LGM distributions of 7 boreal and 15 nemoral widespread European tree species using species distribution modelling. The models were calibrated using data for modern species distributions and climate and projected onto two LGM climate simulations for Europe. Five modelling variants were implemented. 3Models with moderate to good predictive ability for current species range limits and species richness patterns were developed. 4Broadly consistent results were obtained irrespective of the climate simulation and modelling variant used. Our results indicate that LGM climatic conditions suitable for boreal species existed across Central and Eastern Europe and into the Russian Plain. In contrast, suitable climatic conditions for nemoral tree species were largely restricted to the Mediterranean and Black Sea regions. Large proportions of these northern and southern regions would have been suitable for a number of boreal or boreal plus nemoral tree species, respectively. 5These findings are consistent with recent palaeoecological and phylogeographic data regarding LGM distributions of trees and other boreal and nemoral taxa. 6Synthesis. It is clear that the view of the LGM landscape in Europe as largely treeless, especially north of the Alps, needs to be revised. Trees were probably much more widespread during the LGM than hitherto thought, although patchily distributed at low densities due to low atmospheric CO2 concentrations and high wind-speeds. The findings presented here help explain the occurrence of mammal assemblages with mixtures of forest, tundra and steppe species at many localities in southern Central and Eastern Europe during the LGM, as well as the phylogeographic evidence for the extra-Mediterranean persistence of many boreal species. [source]


Comparative phylogeography of eastern chipmunks and white-footed mice in relation to the individualistic nature of species

MOLECULAR ECOLOGY, Issue 13 2006
KEVIN C. ROWE
Abstract Palaeoecological studies have demonstrated that ecological communities as a whole did not remain stable throughout the climatic fluctuations of the Quaternary. The result is that long-term associations of species cannot be inferred by contemporary associations in ecological communities. Therefore, the evolutionary significance of any contemporary ecological interactions among species and of the biotic community within which species have evolved also cannot be assumed from contemporary conditions. Comparative phylogeographic data provide a method to identify species within ecological communities that have shared biogeographic histories. We present an example of a long-term association between populations of two mammalian species, eastern chipmunks (Tamias striatus) and white-footed mice (Peromyscus leucopus), which are commonly associated with deciduous forest habitats. The distribution of mitochondrial DNA variation in T. striatus and P. leucopus from previously glaciated regions of the eastern United States support the hypothesis that, in at least part of their range, genetic lineages of the two species have expanded from similar population sources since the Last Glacial Maximum. In addition, the spatial concordance of genetic lineages of T. striatus and P. leucopus with the oak-savannah forest formations of Wisconsin and Illinois, suggest that populations associated with this community colonized the area in association with a set of arboreal species that comprise their deciduous forest habitat. [source]