Phylogenetic Tree (phylogenetic + tree)

Distribution by Scientific Domains
Distribution within Life Sciences

Terms modified by Phylogenetic Tree

  • phylogenetic tree analysis

  • Selected Abstracts


    A LIKELIHOOD FRAMEWORK FOR INFERRING THE EVOLUTION OF GEOGRAPHIC RANGE ON PHYLOGENETIC TREES

    EVOLUTION, Issue 11 2005
    Richard H. Ree
    Abstract At a time when historical biogeography appears to be again expanding its scope after a period of focusing primarily on discerning area relationships using cladograms, new inference methods are needed to bring more kinds of data to bear on questions about the geographic history of lineages. Here we describe a likelihood framework for inferring the evolution of geographic range on phylogenies that models lineage dispersal and local extinction in a set of discrete areas as stochastic events in continuous time. Unlike existing methods for estimating ancestral areas, such as dispersal-vicariance analysis, this approach incorporates information on the timing of both lineage divergences and the availability of connections between areas (dispersal routes). Monte Carlo methods are used to estimate branch-specific transition probabilities for geographic ranges, enabling the likelihood of the data (observed species distributions) to be evaluated for a given phylogeny and parameterized paleogeographic model. We demonstrate how the method can be used to address two biogeographic questions: What were the ancestral geographic ranges on a phylogenetic tree? How were those ancestral ranges affected by speciation and inherited by the daughter lineages at cladogenesis events? For illustration we use hypothetical examples and an analysis of a Northern Hemisphere plant clade (Cercis), comparing and contrasting inferences to those obtained from dispersal-vicariance analysis. Although the particular model we implement is somewhat simplistic, the framework itself is flexible and could readily be modified to incorporate additional sources of information and also be extended to address other aspects of historical biogeography. [source]


    Phylogenetic trees and evolutionary forests

    EVOLUTIONARY ANTHROPOLOGY, Issue 2 2005
    Jonathan Marks
    First page of article [source]


    Phylogenetic analysis of condensation domains in the nonribosomal peptide synthetases

    FEMS MICROBIOLOGY LETTERS, Issue 1 2005
    Niran Roongsawang
    Abstract Condensation (C) domains in the nonribosomal peptide synthetases are capable of catalyzing peptide bond formation between two consecutively bound various amino acids. C-domains coincide in frequency with the number of peptide bonds in the product peptide. In this study, a phylogenetic approach was used to investigate structural diversity of bacterial C-domains. Phylogenetic trees show that the C-domains are clustered into three functional groups according to the types of substrate donor molecules. They are l -peptidyl donors, d -peptidyl donors, and N -acyl donors. The fact that C-domain structure is not subject to optical configuration of amino acid acceptor molecules supports an idea that the conversion from l to d -form of incorporating amino acid acceptor occurs during or after peptide bond formation. l -peptidyl donors and d -peptidyl donors are suggested to separate before separating the lineage of Gram-positive and Gram-negative bacteria in the evolution process. [source]


    Molecular basis of bacterial resistance to chloramphenicol and florfenicol

    FEMS MICROBIOLOGY REVIEWS, Issue 5 2004
    Stefan Schwarz
    Abstract Chloramphenicol (Cm) and its fluorinated derivative florfenicol (Ff) represent highly potent inhibitors of bacterial protein biosynthesis. As a consequence of the use of Cm in human and veterinary medicine, bacterial pathogens of various species and genera have developed and/or acquired Cm resistance. Ff is solely used in veterinary medicine and has been introduced into clinical use in the mid-1990s. Of the Cm resistance genes known to date, only a small number also mediates resistance to Ff. In this review, we present an overview of the different mechanisms responsible for resistance to Cm and Ff with particular focus on the two different types of chloramphenicol acetyltransferases (CATs), specific exporters and multidrug transporters. Phylogenetic trees of the different CAT proteins and exporter proteins were constructed on the basis of a multisequence alignment. Moreover, information is provided on the mobile genetic elements carrying Cm or Cm/Ff resistance genes to provide a basis for the understanding of the distribution and the spread of Cm resistance , even in the absence of a selective pressure imposed by the use of Cm or Ff. [source]


    PHYLOGENETIC PLACEMENT OF BOTRYOCOCCUS BRAUNII (TREBOUXIOPHYCEAE) AND BOTRYOCOCCUS SUDETICUS ISOLATE UTEX 2629 (CHLOROPHYCEAE),

    JOURNAL OF PHYCOLOGY, Issue 2 2004
    Hoda H. Senousy
    The phylogenetic placement of four isolates of Botryococcus braunii Kützing and of Botryococcus sudeticus Lemmermann isolate UTEX 2629 was investigated using sequences of the nuclear small subunit (18S) rRNA gene. The B. braunii isolates represent the A (two isolates), B, and L chemical races. One isolate of B. braunii (CCAP 807/1; A race) has a group I intron at Escherichia coli position 1046 and isolate UTEX 2629 has group I introns at E. coli positions 516 and 1512. The rRNA sequences were aligned with 53 previously reported rRNA sequences from members of the Chlorophyta, including one reported for B. braunii (Berkeley strain). Phylogenetic trees were constructed using distance, weighted maximum parsimony, and maximum likelihood, and their reliability was estimated using bootstrap analysis for distance and parsimony and Bayesian inference for likelihood. All methods showed, with high bootstrap or credibility support, that the four isolates of B. braunii form a monophyletic group whose closest relatives are in the genus Choricystis in the Trebouxiophyceae, whereas the previously reported B. braunii sequence is from a member of the Chlamydomonadales in the Chlorophyceae and isolate UTEX 2629 is a member of the Sphaeropleales in the Chlorophyceae. Polyphyly of these sequences was confirmed by Kishino-Hasegawa tests on artificial trees in which sequences were moved to a single lineage. [source]


    Phosphoenolpyruvate carboxylase genes in C3, crassulacean acid metabolism (CAM) and C3/CAM intermediate species of the genus Clusia: rapid reversible C3/CAM switches are based on the C3 housekeeping gene

    PLANT CELL & ENVIRONMENT, Issue 12 2006
    ANJA VAASEN
    ABSTRACT The genus Clusia includes species that exhibit either the C3 or crassulacean acid metabolism (CAM) mode of photosynthesis, or those that are able to switch between both modes according to water availability. In order to screen for species-specific genetic variability, we investigated the key carboxylase for CAM, phosphoenolpyruvate carboxylase (PEPC). Sequence analysis of DNA isolated from the obligate CAM species, Clusia hilariana, the obligate C3 species, Clusia multiflora, and an intermediate species that can switch between C3 and CAM photosynthesis, Clusia minor, revealed three different isoforms for C. hilariana and one each for the other two species. Sequence alignments indicated that PEPC from the intermediate species had high homology with the C3 protein and with one of CAM plant proteins. These were assumed to constitute ,housekeeping' proteins, which can also support CAM in intermediate species. The other two isoforms of the CAM plant C. hilariana were either CAM-specific or showed homologies with PEPC from roots. Phylogenetic trees derived from neighbour-joining analysis of amino acid sequences from 13 different Clusia species resulted in two distinct groups of plants with either ,housekeeping' PEPC only, or additionally CAM-related isoforms. Only C. hilariana showed the third, probably root-specific isoform. The high homology of the PEPC from the intermediate species with the C3 protein indicates that for the reversible transition from the C3 to CAM mode of photosynthesis, the C3 type of PEPC is sufficient. Its expression, however, is strongly increased under CAM-inducing conditions. The use of the C3 isoform could have facilitated the evolution of CAM within the genus, which occurred independently for several times. [source]


    A new root-knot nematode, Meloidogyne silvestris n. sp. (Nematoda: Meloidogynidae), parasitizing European holly in northern Spain

    PLANT PATHOLOGY, Issue 3 2009
    P. Castillo
    High infection rates of European holly (Ilex aquifolium) feeder roots by an unknown root-knot nematode were found in a holly forest at Arévalo de la Sierra (Soria province) in northern Spain. Holly trees infected by the root-knot nematode showed some decline and low growth. Infected feeder roots were distorted and showed numerous root galls of large (8,10 mm) to moderate (2,3 mm) size. Morphometry, esterase and malate dehydrogenase electrophoretic phenotypes and phylogenetic trees of sequences within the ribosomal DNA (rDNA) demonstrated that this nematode species differs clearly from other previously described root-knot nematodes. Studies of host-parasite relationships showed a typical susceptible reaction in naturally infected European holly plants, but did not reproduce on a number of cultivated plants, including tomato, grapevine, princess-tree and olive. The species is described here, illustrated and named as Meloidogyne silvestris n. sp. The new root-knot nematode can be morphologically distinguished from other Meloidogyne spp. by: (i) roundish perineal pattern, dorsal arch low, with fine, sinuous cuticle striae, lateral fields faintly visible; (ii) female excretory pore level with stylet knobs, or just anterior to them, EP/ST ratio about 0·8; (iii) second-stage juveniles with hemizonid located 1 to 2 annuli anterior to excretory pore and short, sub-digitate tail; and (iv) males with lateral fields composed of four incisures, with areolated outer bands. Phylogenetic trees derived from maximum parsimony analysis based on 18S, ITS1-5·8S-ITS2 and D2,D3 of 28S rDNA showed that M. silvestris n. sp. can be differentiated from all described root-knot nematode species, and it is clearly separated from other species with resemblance in morphology, such as M. ardenensis, M. dunensis and M. lusitanica. [source]


    Mitochondrial Cytochrome b mRNA Editing in Dinoflagellates: Possible Ecological and Evolutionary Associations?

    THE JOURNAL OF EUKARYOTIC MICROBIOLOGY, Issue 6 2005
    HUAN ZHANG
    Abstract. To verify the hypothesis that mt mRNA editing is widespread in dinoflagellates, we analyzed cytochrome b (cob) mRNA editing for six species representing distinct ecotypes and taxonomic classes of Dinophyceae. Editing is detected in all, which is similar to the three other species studied previously in that edited sites appear to aggregate in four clusters and occur predominantly at first and second positions of codons (93%), overwhelmingly involving A,G, U,C, or C,U substitutions with a smaller number of G,C, G,A changes. Comparative analyses on editing characteristics reveal interesting trends related to phylogenetic relatedness and ecological features. Editing density (percentage of nucleotide that is affected by editing) increases from early to derived lineages. Higher editing densities also map to red tide-forming lineages. Furthermore, similarity of location of edited codons (LOE) and the type of nucleotide changes (TOE) in different lineages mirror the taxonomic affinity of the lineages. Phylogenetic trees constructed from LOE and TOE resemble those inferred from cob sequences. The results bolster our earlier hypothesis that cob editing is widespread in dinoflagellates and suggest that density, location, and type of editing may bear yet-to-be-defined evolutionary and ecological significance. [source]


    Molecular systematics of bisexual Artemia populations

    AQUACULTURE RESEARCH, Issue 7 2006
    Lin Hou
    Abstract To help resolve phylogenetic relationships among bisexual Artemia populations, phylogenetic analysis was conducted using DNA sequences from the nuclear DNA internal transcribed spacer 1 (ITS-1) and portions of the mitochondrial genome corresponding to the cytochrome oxidase I (COI). DNA sequences were generated for nine bisexual Artemia populations living in different regions of the world. Phylogenetic trees based on ITS-1 and COI sequences indicated that bisexual Artemia populations consist of four groups. The bisexual Artemia populations from Tibet and Kazakstan always clustered with Artemia urmiana in the same group; there is small sequence divergence and genetic distance among them. Therefore, we deduced that bisexual Artemia populations from Tibet and Kazakstan may belong to the A. urmiana group. Our study did not support that bisexual Artemia populations from Tibet are a new, separate species A. tibetiana. We also found that A. sinica and A. urmiana have a small genetic distance. Based upon these findings, we conclude that A. urmiana may have played an important role in the evolution of A. sinica. [source]


    Failure to cospeciate: an unsorted tale of millipedes and mites

    BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 2 2010
    LYNN SWAFFORD
    Mites form symbiotic relationships with many animal taxa, including fish, amphibians, reptiles, birds, mammals, mollusks and arthropods. They are often found living on millipedes and it has often been speculated that these two groups of arthropods have, in some cases, undergone coevolution. However, this hypothesis has never been formally tested. Millipedes of the family Xystodesmidae Cook 1895 (Diplopoda: Polydesmida) and their symbiotic mites of the genus Stylochyrus Canestrini & Canestrini 1882 were collected in broadleaf forests of the eastern USA. The DNA from two mitochondrial regions (16S/12S and cox1) was sequenced for all collected millipede and mite specimens. Phylogenetic trees were reconstructed for both millipede and mite taxa using Bayesian inference. Pairwise distance data were used in distance-based coevolutionary analyses and reconstructed phylogenies were used in tree-based coevolutionary analyses. The phylogenetic analyses indicate Stylochyrus and xystodesmid millipede evolutionary history is incongruent. Moreover, the evolutionary relationships among mite individuals and populations have very low support values and indicate little to no geographic structuring. The coevolutionary analyses likewise detected no pattern of coevolution among these millipede and mite lineages. Unlike many arthropod species, Stylochyrus mites appear to be highly vagile. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101, 272,287. [source]


    Evolution of epiphytes in Davalliaceae and related ferns

    BOTANICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 4 2006
    CHIE TSUTSUMI
    The evolution of epiphytes in Davalliaceae was investigated by field observations and molecular phylogenetic analyses. Field studies revealed that in Davalliaceae and related ferns, epiphytes in a broad sense are classified into climber, secondary hemi-epiphyte, and obligate epiphyte, based on combinations of the places (ground vs. tree) of inferred spore germination and sporophyte growth. Some species of Davalliaceae have multiple life forms, i.e. secondary hemi-epiphyte and obligate epiphyte, whereas others are obligate epiphytes. Phylogenetic trees obtained from rbcL and accD gene sequences supported that secondary hemi-epiphytic Oleandra is sister to the epiphytic Davalliaceae and polygrammoid ferns. Analyses of life form evolution based on the phylogenetic relationships suggested that obligate epiphytes of the Davalliaceae and polygrammoid ferns evolved from secondary hemi-epiphytes, or less likely from climbers. We hypothesized a scenario for the evolution of life forms in Davalliaceae and related groups that involves successive changes in rhizome habit, root function, and germination place. Rhizome dorsiventrality and scale morphology, shared by climbers, secondary hemi-epiphytes, and obligate epiphytes examined, may be other innovations for the ferns to have evolved into epiphytes. © 2006 The Linnean Society of London, Botanical Journal of the Linnean Society, 2006, 151, 495,510. [source]


    The characterization of Tasmanian devil Sarcophilius harrisii pelage fibres and their associated lipids

    ACTA ZOOLOGICA, Issue 4 2009
    J. S. Church
    Abstract The Tasmanian devil (Sarcophilius harrisii) is the largest living marsupial carnivore left on Earth. In this paper we report the results of the first thorough characterization of the keratin fibres comprising the Tasmanian devil pelage. The fibre's morphology, structure, composition and surface have been investigated. The results have been compared with those of a number of other mammalian species including carnivores and herbivores. The fibres structure was found to be consistent with that expected for a keratin fibre. From the results of the bound lipid analysis it can be concluded that the Tasmanian devil is a typical mammal in which the 21-carbon atom anteiso branched fatty acid is the predominant bound fatty acid. This is consistent with the Tasmanian devil's position in the mammalian phylogenetic tree. The amino acid analysis places the devil in line with other carnivores. The high cystine and proline content may correlate with the Tasmanian devil's diet which is rich in muscle and collagen proteins. [source]


    Genetic structure of Euphrasia stricta on the Baltic island of Gotland, Sweden

    ECOGRAPHY, Issue 4 2005
    Anna-Karin Kolseth
    Genetic differentiation between and within five varieties of Euphrasia stricta (var. brevipila, var. gotlandica, var. stricta, var. suecica and var. tenuis) on Gotland was investigated, using amplified fragment length polymorphism, AFLP. The varieties are described in the literature by morphology and association to habitat type. We wanted to investigate whether the varieties are locally adapted populations to the typical habitat type for each variety or if they are preadapted to certain habitat types and have colonized Gotland in their present form. A constrained principal coordinate analysis revealed three genetically differentiated subunits within the species. The two early-flowering varieties suecica and tenuis each formed a distinct group, while the three late-flowering varieties brevipila, gotlandica and stricta together formed the third group. A phylogenetic tree confirms the partitioning into three groups. Within the group containing the late-flowering varieties there are populations that pair as each other's closest relatives, but belong to different varieties. These pairs are also geographically adjacent. The phylogenetic tree had a "star-like" appearance indicating a stronger divergence between populations than between varieties. The same pattern was seen in the partitioning of genetic diversity, with a lower amount of genetic variation occurring between varieties, FST=0.14, than between populations within the varieties, FST ranging from 0.26 to 0.60. In Euphrasia stricta the varieties suecica and tenuis and the group containing the varieties stricta/gotlandica/brevipila are likely to have a phylogeographical history outside Gotland, or an ancient and concealed local origin on the island. Within the group stricta/gotlandica/brevipila local evolutionary events seem to determine the variety identity, probably through local adaptation. [source]


    Is the originality of a species measurable?

    ECOLOGY LETTERS, Issue 6 2005
    Sandrine Pavoine
    Abstract In this paper, we introduce the concept of ,originality of a species within a set' in order to indicate the average rarity of all the features belonging to this species. Using a phylogenetic tree of 70 species of New World terrestrial Carnivora, we suggest measuring the originality by a probability distribution. This maximizes the expected number of features shared by two species randomly drawn from the set. By using this new index, we take account of branch lengths whereas current indices of originality focus on tree topology. As a supplement to Nee and May's optimizing algorithm, we find that originality must be one of the criteria used in conservation planning. [source]


    Integration of genotoxicity and population genetic analyses in kangaroo rats (Dipodomys merriami) exposed to radionuclide contamination at the Nevada Test Site, USA

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 2 2001
    Christopher W. Theodorakis
    Abstract We examined effects of radionuclide exposure at two atomic blast sites on kangaroo rats (Dipodomys merriami) at the Nevada Test Site, Nevada, USA, using genotoxicity and population genetic analyses. We assessed chromosome damage by micronucleus and flow cytometric assays and genetic variation by randomly amplified polymorphic DNA (RAPD) and mitochondrial DNA (mtDNA) analyses. The RAPD analysis showed no population structure, but mtDNA exhibited differentiation among and within populations. Genotoxicity effects were not observed when all individuals were analyzed. However, individuals with mtDNA haplotypes unique to the contaminated sites had greater chromosomal damage than contaminated-site individuals with haplotypes shared with reference sites. When interpopulation comparisons used individuals with unique haplotypes, one contaminated site had greater levels of chromosome damage than one or both of the reference sites. We hypothesize that shared-haplotype individuals are potential migrants and that unique-haplotype individuals are potential long-term residents. A parsimony approach was used to estimate the minimum number of migration events necessary to explain the haplotype distributions on a phylogenetic tree. The observed predominance of migration events into the contaminated sites supported our migration hypothesis. We conclude the atomic blast sites are ecological sinks and that immigration masks the genotoxic effects of radiation on the resident populations. [source]


    THE GEOGRAPHICAL PATTERN OF SPECIATION AND FLORAL DIVERSIFICATION IN THE NEOTROPICS: THE TRIBE SINNINGIEAE (GESNERIACEAE) AS A CASE STUDY

    EVOLUTION, Issue 7 2007
    Mathieu Perret
    The geographical pattern of speciation and the relationship between floral variation and species ranges were investigated in the tribe Sinningieae (Gesneriaceae), which is found mainly in the Atlantic forests of Brazil. Geographical distribution data recorded on a grid system of 0.5 × 0.5 degree intervals and a near-complete species-level phylogenetic tree of Sinningieae inferred from a simultaneous analysis of seven DNA regions were used to address the role of geographical isolation in speciation. Geographical range overlaps between sister lineages were measured across all nodes in the phylogenetic tree and analyzed in relation to relative ages estimated from branch lengths. Although there are several cases of species sympatry in Sinningieae, patterns of sympatry between sister taxa support the predominance of allopatric speciation. The pattern of sympatry between sister taxa is consistent with range shifts following allopatric speciation, except in one clade, in which the overlapping distribution of recent sister species indicates speciation within a restricted geographical area and involving changes in pollinators and habitats. The relationship between floral divergence and regional sympatry was also examined by analyzing floral contrasts, phenological overlap, and the degree of sympatry between sister clades. Morphological contrast between flowers is not increased in sympatry and phenological divergence is more apparent between allopatric clades than between sympatric clades. Therefore, our results failed to indicate a tendency for sympatric taxa to minimize morphological and phenological overlap (geographic exclusion and/or character displacement hypotheses). Instead, they point toward adaptation in phenology to local conditions and buildup of sympatries at random with respect to flower morphology. Additional studies at a lower geographical scale are needed to identify truely coexisting species and the components of their reproductive isolation. [source]


    SPECIFICITY AND SPECIALIZATION OF CONGENERIC MONOGENEANS PARASITIZING CYPRINID FISH

    EVOLUTION, Issue 5 2006
    Andrea, Imková
    Abstract Patterns and likely processes connected with evolution of host specificity in congeneric monogeneans parasitizing fish species of the Cyprinidae were investigated. A total of 51 Dactylogyrus species was included. We investigated (1) the link between host specificity and parasite phylogeny; (2) the morphometric correlates of host specificity, parasite body size, and variables of attachment organs important for host specificity; (3) the evolution of morphological adaptation, that is, attachment organ; (4) the determinants of host specificity following the hypothesis of specialization on more predictable resources considering maximal body size, maximal longevity, and abundance as measures of host predictability; and (5) the potential link between host specificity and parasite diversification. Host specificity, expressed as an index of host specificity including phylogenetic and taxonomic relatedness of hosts, was partially associated with parasite phylogeny, but no significant contribution of host phylogeny was found. The mapping of host specificity into the phylogenetic tree suggests that being specialist is not a derived condition for Dactylogyrus species. The different morphometric traits of the attachment apparatus seem to be selected in connection with specialization of specialist parasites and other traits favored as adaptations in generalist parasites. Parasites widespread on several host species reach higher abundance within hosts, which supports the hypothesis of ecological specialization. When separating specialists and generalists, we confirmed the hypothesis of specialization on a predictable resource; that is, specialists with larger anchors tend to live on fish species with larger body size and greater longevity, which could be also interpreted as a mechanism for optimizing morphological adaptation. We demonstrated that ecology of host species could also be recognized as an important determinant of host specificity. The mapping of morphological characters of the attachment organ onto the parasite phylogenetic tree reveals that morphological evolution of the attachment organ is connected with host specificity in the context of fish relatedness, especially at the level of host subfamilies. Finally, we did not find that host specificity leads to parasite diversification in congeneric monogeneans. [source]


    A LIKELIHOOD FRAMEWORK FOR INFERRING THE EVOLUTION OF GEOGRAPHIC RANGE ON PHYLOGENETIC TREES

    EVOLUTION, Issue 11 2005
    Richard H. Ree
    Abstract At a time when historical biogeography appears to be again expanding its scope after a period of focusing primarily on discerning area relationships using cladograms, new inference methods are needed to bring more kinds of data to bear on questions about the geographic history of lineages. Here we describe a likelihood framework for inferring the evolution of geographic range on phylogenies that models lineage dispersal and local extinction in a set of discrete areas as stochastic events in continuous time. Unlike existing methods for estimating ancestral areas, such as dispersal-vicariance analysis, this approach incorporates information on the timing of both lineage divergences and the availability of connections between areas (dispersal routes). Monte Carlo methods are used to estimate branch-specific transition probabilities for geographic ranges, enabling the likelihood of the data (observed species distributions) to be evaluated for a given phylogeny and parameterized paleogeographic model. We demonstrate how the method can be used to address two biogeographic questions: What were the ancestral geographic ranges on a phylogenetic tree? How were those ancestral ranges affected by speciation and inherited by the daughter lineages at cladogenesis events? For illustration we use hypothetical examples and an analysis of a Northern Hemisphere plant clade (Cercis), comparing and contrasting inferences to those obtained from dispersal-vicariance analysis. Although the particular model we implement is somewhat simplistic, the framework itself is flexible and could readily be modified to incorporate additional sources of information and also be extended to address other aspects of historical biogeography. [source]


    STATISTICAL ANALYSIS OF DIVERSIFICATION WITH SPECIES TRAITS

    EVOLUTION, Issue 1 2005
    Emmanuel Paradis
    Abstract Testing whether some species traits have a significant effect on diversification rates is central in the assessment of macroevolutionary theories. However, we still lack a powerful method to tackle this objective. I present a new method for the statistical analysis of diversification with species traits. The required data are observations of the traits on recent species, the phylogenetic tree of these species, and reconstructions of ancestral values of the traits. Several traits, either continuous or discrete, and in some cases their interactions, can be analyzed simultaneously. The parameters are estimated by the method of maximum likelihood. The statistical significance of the effects in a model can be tested with likelihood ratio tests. A simulation study showed that past random extinction events do not affect the Type I error rate of the tests, whereas statistical power is decreased, though some power is still kept if the effect of the simulated trait on speciation is strong. The use of the method is illustrated by the analysis of published data on primates. The analysis of these data showed that the apparent overall positive relationship between body mass and species diversity is actually an artifact due to a clade-specific effect. Within each clade the effect of body mass on speciation rate was in fact negative. The present method allows to take both effects (clade and body mass) into account simultaneously. [source]


    TIME TO THE MOST RECENT COMMON ANCESTOR AND DIVERGENCE TIMES OF POPULATIONS OF COMMON CHAFFINCHES (FRINGILLA COELEBS) IN EUROPE AND NORTH AFRICA: INSIGHTS INTO PLEISTOCENE REFUGIA AND CURRENT LEVELS OF MIGRATION

    EVOLUTION, Issue 1 2002
    Cortland K. Griswold
    Abstract We analyzed sequences from a 275-bp hypervariable region in the 5, end of the mitochondrial DNA control region in 190 common chaffinches (Fringilla coelebs) from 19 populations in Europe and North Africa, including new samples from Greece and Morocco. Coalescent techniques were applied to estimate the time to the most recent common ancestor (TMRCA) and divergence times of these populations. The first objective of this study was to infer the locations of refugia where chaffinches survived the last glacial episode, and this was achieved by estimating the TMRCA of populations in regions surrounding the Mediterranean that were unglaciated in the late Pleistocene. Although extant populations in Iberia, Corsica, Greece, and North Africa harbor haplotypes that are basal in a phylogenetic tree, this information alone cannot be used to infer that these localities served as refugia, because it is impossible to infer the ages of populations and their divergence times without also considering the population genetic processes of mutation, migration, and drift. Provided we assume the TMRCAs of populations are a reasonable estimate of a population's age, coalescent-based methods place resident populations in Iberia, Corsica, Greece, and North Africa during the time of the last glacial maximum, suggesting these regions served as refugia for the common chaffinch. The second objective was to determine when populations began diverging from each other and to use this as a baseline to estimate current levels of gene flow. Divergence time estimates suggest that European populations began diverging about 60,000 years before present. The relatively recent divergence of populations in North Africa, Italy, and Iberia may explain why classic migration estimates based on equilibrium assumptions are high for these populations. We compare these estimates with nonequilibrium-based estimates and show that the nonequilibrium estimates are consistently lower than the equilibrium estimates. [source]


    Metabolic fate of l -lactaldehyde derived from an alternative l -rhamnose pathway

    FEBS JOURNAL, Issue 20 2008
    Seiya Watanabe
    Fungal Pichia stipitis and bacterial Azotobacter vinelandii possess an alternative pathway of l -rhamnose metabolism, which is different from the known bacterial pathway. In a previous study (Watanabe S, Saimura M & Makino K (2008) Eukaryotic and bacterial gene clusters related to an alternative pathway of non-phosphorylated l -rhamnose metabolism. J Biol Chem283, 20372,20382), we identified and characterized the gene clusters encoding the four metabolic enzymes [l -rhamnose 1-dehydrogenase (LRA1), l -rhamnono-,-lactonase (LRA2), l -rhamnonate dehydratase (LRA3) and l -2-keto-3-deoxyrhamnonate aldolase (LRA4)]. In the known and alternative l -rhamnose pathways, l -lactaldehyde is commonly produced from l -2-keto-3-deoxyrhamnonate and l -rhamnulose 1-phosphate by each specific aldolase, respectively. To estimate the metabolic fate of l -lactaldehyde in fungi, we purified l -lactaldehyde dehydrogenase (LADH) from P. stipitis cells l -rhamnose-grown to homogeneity, and identified the gene encoding this enzyme (PsLADH) by matrix-assisted laser desorption ionization-quadruple ion trap-time of flight mass spectrometry. In contrast, LADH of A. vinelandii (AvLADH) was clustered with the LRA1,4 gene on the genome. Physiological characterization using recombinant enzymes revealed that, of the tested aldehyde substrates, l -lactaldehyde is the best substrate for both PsLADH and AvLADH, and that PsLADH shows broad substrate specificity and relaxed coenzyme specificity compared with AvLADH. In the phylogenetic tree of the aldehyde dehydrogenase superfamily, PsLADH is poorly related to the known bacterial LADHs, including that of Escherichia coli (EcLADH). However, despite its involvement in different l -rhamnose metabolism, AvLADH belongs to the same subfamily as EcLADH. This suggests that the substrate specificities for l -lactaldehyde between fungal and bacterial LADHs have been acquired independently. [source]


    Partitioning phylogenetic and adaptive components of the geographical body-size pattern of New World birds

    GLOBAL ECOLOGY, Issue 1 2008
    Lizabeth Ramirez
    ABSTRACT Aim To evaluate seasonal body-size patterns for New World birds in geographical space, to develop environmental models to explain the gradients, and to estimate phylogenetic and adaptive contributions. Location The Western Hemisphere. Methods We used range maps to generate gridded geometric mean body masses. Summer and winter patterns were distinguished based on breeding and non-breeding ranges. We first generated the geographical gradients, followed by phylogenetic eigenvector regression to generate body sizes predicted by the birds' positions in a phylogenetic tree, which were used to generate the expected phylogenetic gradient. Subtracting the expected pattern from the observed pattern isolated the adaptive component. Ordinary least squares multiple-regression models examined factors influencing the phylogenetic, adaptive and combined components of the seasonal body-size patterns, and non-spatial and spatial models were compared. Results Birds are larger in the temperate zones than in the tropics. The gradient is quantitatively stronger in winter than in summer. Regression models explained 66.6% of the variance in summer mass and 45.9% of the variance in winter mass. In summer, phylogenetic and adaptive responses of birds contribute equally to the gradient. In winter, the gradient in North America is much stronger than that expected by taxonomic turnover, and responses of species independent of their family membership drive the overall pattern. Main conclusions We confirm Bergmann's rule in New World birds and conclude that winter temperatures ultimately drive the pattern, exerting selection pressures on birds that overwhelm patterns expected by phylogenetic inertia at the family level. However, in summer, the movement of migratory species into the temperate zone weakens the gradient and generates a pattern more congruent with that expected from the taxonomic composition of the fauna. The analytical method we develop here represents a useful tool for partitioning the phylogenetic and non-phylogenetic components of spatially explicit macroecological data. [source]


    Microsatellite markers application on domesticated silkworm and wild silkworm

    INSECT SCIENCE, Issue 6 2005
    LIE ZHANG
    Abstract Twenty-seven sets of simple sequence repeat (SSR) primers were developed through hybridizing of (CA)n, (CT)n and (GT)n and sequencing the positive clones in libraries constructed by using p50 silkworm strain. Of those primer pairs, 26 sets of SSR primers amplified well in two regional wild silkworm strains. Ten domesticated silkworm strains and two regional wild silkworm strains were used for comparing the polymorphisms and for constructing a phylogenetic tree employing the UPGAM method. The result showed that the genetic distances within Japanese strains are closer than those of Chinese strains. And this result also implies that Japanese strains diverged from domesticated silkworm later than Chinese strains. According to the clustering result, the domesticated silkworm is firstly clustered in one class, but could be classified into two groups. Within a strain, the individual polymorphism of wild silkworm was significantly higher in abundance than those of domesticated silkworm. The S SR primers of domesticated silkworm could be used in genetic studies for wild silkworm. [source]


    A graphical method to construct a phylogenetic tree

    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 9 2006
    Weiping Wang
    Abstract A 3D graphical representation of DNA sequences, which has no circuit or degeneracy, is derived for mathematical denotation of DNA sequence. Based on this graphical representation, we propose a new sequence distance measure. We make use of the corresponding similarity matrix to construct a phylogenic tree by virtue of the fuzzy theory. The examination of phylogenic tree belong to eight species illustrates the utility of our approach. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006 [source]


    A phylogenetic analysis of Bacillus thuringiensis serovars by RFLP-based ribotyping

    JOURNAL OF APPLIED MICROBIOLOGY, Issue 2 2001
    K.-B. Joung
    Aims: To determine the 23S and 5S rRNA gene fingerprints in order to reveal phylogenetic relationships among Bacillus thuringiensis strains. Methods and Results: Eighty-six B. thuringiensis strains which include 80 serovar type strains, five intraserovar strains and a non-serotypeable strain, wuhanensis, were tested. Total DNA was digested with EcoRI and HindIII. The 23S and 5S rRNA gene restriction fragment length polymorphisms showed 82 distinctive ribopatterns. The dendrogram generated by numerical analysis showed 10 phylogenetic groups and six ungrouped serovars at the 95·5% DNA relatedness rate. A second dendrogram was constructed using a combination of the data from this study and from a previous study on 16S rRNA gene fingerprinting. It revealed eight distinct phylogenetic groups and three ungrouped serovars at the 94% DNA relatedness rate. Conclusions: This method permitted the classification and positioning of a wide variety of B. thuringiensis strains on a phylogenetic tree. Bacillus thuringiensis strains appear to be relatively homogeneous and to share a high degree of DNA relatedness. Significance and Impact of the Study: This study contributes a further step to the definition of valid taxonomic sublevels for the B. thuringiensis species. [source]


    Phylogeography of the introduced species Rattus rattus in the western Indian Ocean, with special emphasis on the colonization history of Madagascar

    JOURNAL OF BIOGEOGRAPHY, Issue 3 2010
    Charlotte Tollenaere
    Abstract Aim, To describe the phylogeographic patterns of the black rat, Rattus rattus, from islands in the western Indian Ocean where the species has been introduced (Madagascar and the neighbouring islands of Réunion, Mayotte and Grande Comore), in comparison with the postulated source area (India). Location, Western Indian Ocean: India, Arabian Peninsula, East Africa and the islands of Madagascar, Réunion, Grande Comore and Mayotte. Methods, Mitochondrial DNA (cytochrome b, tRNA and D-loop, 1762 bp) was sequenced for 71 individuals from 11 countries in the western Indian Ocean. A partial D-loop (419 bp) was also sequenced for eight populations from Madagascar (97 individuals), which were analysed in addition to six previously published populations from southern Madagascar. Results, Haplotypes from India and the Arabian Peninsula occupied a basal position in the phylogenetic tree, whereas those from islands were distributed in different monophyletic clusters: Madagascar grouped with Mayotte, while Réunion and Grand Comore were present in two other separate groups. The only exception was one individual from Madagascar (out of 190) carrying a haplotype that clustered with those from Réunion and South Africa. ,Isolation with migration' simulations favoured a model with no recurrent migration between Oman and Madagascar. Mismatch distribution analyses dated the expansion of Malagasy populations on a time-scale compatible with human colonization history. Higher haplotype diversity and older expansion times were found on the east coast of Madagascar compared with the central highlands. Main conclusions, Phylogeographic patterns supported the hypothesis of human-mediated colonization of R. rattus from source populations in either the native area (India) or anciently colonized regions (the Arabian Peninsula) to islands of the western Indian Ocean. Despite their proximity, each island has a distinct colonization history. Independent colonization events may have occurred simultaneously in Madagascar and Grande Comore, whereas Mayotte would have been colonized from Madagascar. Réunion was colonized independently, presumably from Europe. Malagasy populations may have originated from a single successful colonization event, followed by rapid expansion, first in coastal zones and then in the central highlands. The congruence of the observed phylogeographic pattern with human colonization events and pathways supports the potential relevance of the black rat in tracing human history. [source]


    Inter-ocean dispersal is an important mechanism in the zoogeography of hakes (Pisces: Merluccius spp.)

    JOURNAL OF BIOGEOGRAPHY, Issue 6 2001
    W. Stewart Grant
    Aim To present new genetic data and to review available published genetic data that bear on the phylogeny of hakes in the genus Merluccius. To construct a zoogeographical model from a summary phylogenetic tree with dated nodes. To search for an explanation of antitropical distributions in hakes. To assess peripheral isolate, centrifugal and vicariance models of speciation in view of the molecular phylogeny and zoogeography of hakes. Locations Northern and southern Atlantic Ocean, eastern Pacific Ocean, South Pacific Ocean. Methods Electrophoretic analysis of 20 allozyme loci in 10 species of hakes. Phylogenetic tree construction with parsimony and bootstrap methods. Reanalysis of previous genetic data. Analysis of zoogeographical patterns with geographical distributions of molecular genetic markers. Results Phylogenetic analyses of new and previous allozyme data and previous mitochondrial DNA data indicate a deep genetic partition between Old- and New-World hakes with genetic distances corresponding to 10,15 Myr of separation. This time marks a widening rift between Europe and North America and a rapid drop in ocean temperatures that subdivided an ancestral population of North Atlantic hake. Two Old-World clades spanning the equator include pairs of sister taxa separated by tropical waters. Divergence times between these pairs of sister-taxa variously date to the early Pliocene and late Pleistocene. Amongst New-World hakes, pairs of sister taxa are separated by equatorial waters, by the Southern Ocean, and by the Panama Isthmus. These genetic separations reflect isolation by the rise of the Isthmus 3,4 Ma and by Pliocene and Pleistocene dispersals. Pairs of species occurring in sympatry or parapatry in six regions do not reflect sister-species relationships, but appear to reflect allopatric divergence and back dispersals of descendent species. Some geographically isolated regional populations originating within the last few hundreds of thousands of years merit subspecies designations. Conclusions Vicariance from tectonic movement of continental plates or ridge formation cannot account for the disjunct distributions of most hake sister taxa. Molecular genetic divergences place the origin of most hake species diversity in the last 2,3 Myr, a period of negligible tectonic activity. Distributions of many hake species appear to have resulted from dispersals and back dispersals across both warm equatorial waters and cool waters in the Southern Ocean, driven by oscillations in climate and ocean temperatures. Genetic and ecological divergence prevents hybridization and competitive exclusion between sympatric species pairs in six regions. Sister-taxa relationships and estimates of divergence are consistent with the modified peripheral isolate model of speciation in which vicariances, range expansions and contractions, dispersals and founder events lead to isolated populations that subsequently diverge to form new species. [source]


    Identification of a Parathyroid Hormone in the Fish Fugu rubripes,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 7 2003
    Janine A Danks
    Abstract A PTH gene has been isolated from the fish Fugu rubripes. The encoded protein of 80 amino acid has the lowest homology with any of the PTH family members. Fugu PTH(1,34) had 5-fold lower potency than human PTH(1,34) in a mammalian cell system. Introduction: Parathyroid hormone (PTH) is the major hypercalcemic hormone in higher vertebrates. Fish lack parathyroid glands, but there have numerous attempts to identify and isolate PTH from fish. Materials and Methods: Polymerase chain reaction (PCR) was performed with primers based on preliminary data from the Joint Genome Institute database. PCR amplification was performed on genomic DNA isolated from Fugu rubripes. PCR products were purified and DNA was sequenced. All sequence was confirmed from more than one independently amplified PCR product. Multiple sequence alignments were carried out, and the percentage of identities and similarities were calculated. An unrooted phylogenetic tree, using all the known PTH and PTH-related protein (PTHrP) amino acid sequences, was determined. Synthetic peptides were tested in a biological assay that measured cyclic adenosine 3,,5,-monophosphate formation in UMR106.1 cells. Rabbit polyclonal antisera specific for N-terminal human PTHrP and one rabbit polyclonal antiserum specific for N terminus hPTH were used to test the cross-reactivity with fPTH(1,34) in immunoblots. [source]


    A simple covarion-based approach to analyse nucleotide substitution rates

    JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 4 2002
    J. Siltberg
    Using the ratio of nonsynonymous to synonymous nucleotide substitution rates (Ka/Ks) is a common approach for detecting positive selection. However, calculation of this ratio over a whole gene combines amino acid sites that may be under positive selection with those that are highly conserved. We introduce a new covarion-based method to sample only the sites potentially under selective pressure. Using ancestral sequence reconstruction over a phylogenetic tree coupled with calculation of Ka/Ks ratios, positive selection is better detected by this simple covarion-based approach than it is using a whole gene analysis or a windowing analysis. This is demonstrated on a synthetic dataset and is tested on primate leptin, which indicates a previously undetected round of positive selection in the branch leading to Gorilla gorilla. [source]


    Comments on ,Significance of developmental expression of amphioxus Branchiostoma belcheri and zebrafish Danio rerio Hsd17b10 in biological and medical research'

    JOURNAL OF FISH BIOLOGY, Issue 8 2009
    X. He
    The reported data on the developmental expression of Hsd17b10 gene in Danio rerio is crucial to the utilization of the D. rerio embryo as an animal model for human developmental disorders caused either by mutations on HSD17B10 (formerly HADH2) or by defective expression of the gene. Related diseases were summarized, and it was noticed that hyperinsulinaemic hypoglycaemia is not linked to HSD17B10. This inherited disease is actually caused by a deletion in the HADH gene on chromosome 4. Moreover, it was found by a revision of the reported phylogenetic tree that hydroxyacyl-CoA dehydrogenase II or rather hydroxysteroid (17beta) dehydrogenase 10 (HSD10) of amphioxus Branchiostoma belcheri,occupies a transition position from HSD10 orthologs of invertebrates to those of vertebrates. [source]