Home About us Contact | |||
Phylogenetic Scales (phylogenetic + scale)
Selected AbstractsThe importance of phylogenetic scale in tests of Bergmann's and Rapoport's rules: lessons from a clade of South American lizardsJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 6 2005F. B. CRUZ Abstract We tested for the occurrence of Bergmann's rule, the pattern of increasing body size with latitude, and Rapoport's rule, the positive relationship between geographical range size and latitude, in 34 lineages of Liolaemus lizards that occupy arid regions of the Andean foothills. We tested the climatic-variability hypothesis (CVH) by examining the relationship between thermal tolerance breadth and distribution. Each of these analyses was performed varying the level of phylogenetic inclusiveness. Bergmann's rule and the CVH were supported, but Rapoport's rule was not. More variance in the data for Bergmann's rule and the CVH was explained using species belonging to the L. boulengeri series rather than all species, and inclusion of multiple outgroups tended to obscure these macroecological patterns. Evidence for Bergmann's rule and the predicted patterns from the CVH remained after application of phylogenetic comparative methods, indicating a greater role of ecological processes rather than phylogeny in shaping the current species distributions of these lizards. [source] Searching for phylogenetic pattern in biological invasionsGLOBAL ECOLOGY, Issue 1 2008erban Proche Abstract It has been suggested that alien species with close indigenous relatives in the introduced range may have reduced chances of successful establishment and invasion (Darwin's naturalization hypothesis). Studies trying to test this have in fact been addressing four different hypotheses, and the same data can support some while rejecting others. In this paper, we argue that the phylogenetic pattern will change depending on the spatial and phylogenetic scales considered. Expectations and observations from invasion biology and the study of natural communities are that at the spatial scale relevant to competitive interactions, closely related species will be spatially separated, whereas at the regional scale, species in the same genera or families will tend to co-occur more often than by chance. We also argue that patterns in the relatedness of indigenous and naturalized plants are dependent on the continental/island setting, spatial occupancy levels, and on the group of organisms under scrutiny. Understanding how these factors create a phylogenetic pattern in invasions will help us predict which groups are more likely to invade where, and should contribute to general ecological theory. [source] Emerging patterns in the comparative analysis of phylogenetic community structureMOLECULAR ECOLOGY, Issue 4 2009S. M. VAMOSI Abstract The analysis of the phylogenetic structure of communities can help reveal contemporary ecological interactions, as well as link community ecology with biogeography and the study of character evolution. The number of studies employing this broad approach has increased to the point where comparison of their results can now be used to highlight successes and deficiencies in the approach, and to detect emerging patterns in community organization. We review studies of the phylogenetic structure of communities of different major taxa and trophic levels, across different spatial and phylogenetic scales, and using different metrics and null models. Twenty-three of 39 studies (59%) find evidence for phylogenetic clustering in contemporary communities, but terrestrial and/or plant systems are heavily over-represented among published studies. Experimental investigations, although uncommon at present, hold promise for unravelling mechanisms underlying the phylogenetic community structure patterns observed in community surveys. We discuss the relationship between metrics of phylogenetic clustering and tree balance and explore the various emerging biases in taxonomy and pitfalls of scale. Finally, we look beyond one-dimensional metrics of phylogenetic structure towards multivariate descriptors that better capture the variety of ecological behaviours likely to be exhibited in communities of species with hundreds of millions of years of independent evolution. [source] The two faces of short-range evolutionary dynamics of regulatory modes in bacterial transcriptional regulatory networksBIOESSAYS, Issue 7 2007S. Balaji Studies on the conservation of the inferred transcriptional regulatory network of prokaryotes have suggested that specific transcription factors are less-widely conserved in comparison to their target genes. This observation implied that, at large evolutionary distances, the turnover of specific transcription factors through loss and non-orthologous displacement might be a major factor in the adaptive radiation of prokaryotes. However, the recent work of Hershberg and Margalit1 suggests that, at shorter phylogenetic scales, the evolutionary dynamics of the bacterial transcriptional regulatory network might exhibit distinct patterns. The authors find previously unnoticed relationships between the regulatory mode (activation or repression), the number of regulatory interactions and their conservation patterns in ,-proteobacteria. These relationships might be shaped by the differences in the adaptive value and mode of operation of different regulatory interactions. BioEssays 29:625,629, 2007. © 2007 Wiley Periodicals, Inc. [source] |