Home About us Contact | |||
Phosphorylation Pattern (phosphorylation + pattern)
Selected AbstractsHomologous desensitization of guanylyl cyclase A, the receptor for atrial natriuretic peptide, is associated with a complex phosphorylation patternFEBS JOURNAL, Issue 11 2010Juliane Schröter Atrial natriuretic peptide (ANP), via its guanylyl cyclase A (GC-A) receptor and intracellular guanosine 3,,5,-cyclic monophosphate production, is critically involved in the regulation of blood pressure. In patients with chronic heart failure, the plasma levels of ANP are increased, but the cardiovascular actions are severely blunted, indicating a receptor or postreceptor defect. Studies on metabolically labelled GC-A-overexpressing cells have indicated that GC-A is extensively phosphorylated, and that ANP-induced homologous desensitization of GC-A correlates with receptor dephosphorylation, a mechanism which might contribute to a loss of function in vivo. In this study, tandem MS analysis of the GC-A receptor, expressed in the human embryonic kidney cell line HEK293, revealed unambiguously that the intracellular domain of the receptor is phosphorylated at multiple residues: Ser487, Ser497, Thr500, Ser502, Ser506, Ser510 and Thr513. MS quantification based on multiple reaction monitoring demonstrated that ANP-provoked desensitization was accompanied by a complex pattern of receptor phosphorylation and dephosphorylation. The population of completely phosphorylated GC-A was diminished. However, intriguingly, the phosphorylation of GC-A at Ser487 was selectively enhanced after exposure to ANP. The functional relevance of this observation was analysed by site-directed mutagenesis. The substitution of Ser487 by glutamate (which mimics phosphorylation) blunted the activation of the GC-A receptor by ANP, but prevented further desensitization. Our data corroborate previous studies suggesting that the responsiveness of GC-A to ANP is regulated by phosphorylation. However, in addition to the dephosphorylation of the previously postulated sites (Ser497, Thr500, Ser502, Ser506, Ser510), homologous desensitization seems to involve the phosphorylation of GC-A at Ser487, a newly identified site of phosphorylation. The identification and further characterization of the specific mechanisms involved in the downregulation of GC-A responsiveness to ANP may have important pathophysiological implications. Structured digital abstract ,,MINT-7713870, MINT-7713887: PMCA (uniprotkb:P20020) and GC-A (uniprotkb:P18910) colocalize (MI:0403) by fluorescence microscopy (MI:0416) [source] Modifications in DARPP-32 phosphorylation pattern after repeated palatable food consumption undergo rapid habituation in the nucleus accumbens shell of non-food-deprived ratsJOURNAL OF NEUROCHEMISTRY, Issue 2 2010Barbara Danielli Abstract In non-food-deprived rats a palatable meal induces a transient increase in dopamine output in the prefrontal cortex and nucleus accumbens shell and core; habituation to this response develops with a second palatable meal, selectively in the shell, unless animals are food-deprived. A palatable meal also induces time-dependent modifications in the dopamine and cAMP-regulated phosphoprotein of Mr 32 000 (DARPP-32) phosphorylation pattern that are prevented when SCH 23390, a selective dopamine D1 receptor antagonist, is administered shortly after the meal. This study investigated whether dopaminergic habituation in the shell had a counterpart in DARPP-32 phosphorylation changes. In non-food-deprived rats, two consecutive palatable meals were followed by similar sequences of modifications in DARPP-32 phosphorylation levels in the prefrontal cortex and nucleus accumbens core, while changes after the second meal were blunted in the shell. In food-deprived rats two consecutive meals also induced similar phosphorylation changes in the shell. Finally, SCH 23390 administered shortly after the first palatable meal in non-food-deprived rats inhibited DARPP-32 phosphorylation changes in response to the first meal, and prevented the habituation to a second meal in terms of dopaminergic response and DARPP-32 phosphorylation changes. Thus, dopamine D1 receptor stimulation plays a role in the development of habituation. [source] L -NAME reverses quinolinic acid-induced toxicity in rat corticostriatal slices: Involvement of src family kinasesJOURNAL OF NEUROSCIENCE RESEARCH, Issue 12 2007Cinzia Mallozzi Abstract Quinolinic acid (QA) is an endogenous excitotoxin acting on N -methyl- d -aspartate receptors (NMDARs) that leads to the pathologic and neurochemical features similar to those observed in Huntington's disease (HD). The mechanism of QA toxicity also involves free radicals formation and oxidative stress. NMDARs are particularly vulnerable to the action of reactive oxygen species (ROS) and reactive nitrogen species (RNS) that can act as modulators of the activity of protein tyrosine kinases (PTKs) and phosphotyrosine phosphatases (PTPs). Because QA is able to activate neuronal nitric oxide synthase (nNOS) as well as to stimulate the NMDARs, we evaluated the effect of N,-Nitro- l -arginine-methyl ester (l -NAME), a selective nNOS inhibitor, on QA-induced neurotoxicity in rat corticostriatal slices. In electrophysiologic experiments we observed that slice perfusion with QA induced a strong reduction of field potential (FP) amplitude, followed by a partial recovery at the end of the QA washout. In the presence of l -NAME the recovery of FP amplitude was significantly increased with respect to QA alone. In synaptosomes, prepared from corticostriatal slices after the electrophysiologic recordings, we observed that l -NAME pre-incubation reversed the QA-mediated inhibitory effects on protein tyrosine phosphorylation pattern, c-src, lyn, and fyn kinase activities and tyrosine phosphorylation of NMDAR subunit NR2B, whereas the PTP activity was not recovered in the presence of l -NAME. These findings suggest that NO plays a key role in the molecular mechanisms of QA-mediated excitotoxicity in experimental model of HD. © 2007 Wiley-Liss, Inc. [source] Protein synthesis and mRNA storage in cattle oocytes maintained under meiotic block by roscovitine inhibition of MPF activityMOLECULAR REPRODUCTION & DEVELOPMENT, Issue 4 2004Céline Vigneron Abstract Roscovitine, a specific inhibitor of MPF kinase activity, has been shown to block efficiently and reversibly the meiotic resumption of oocytes from different species, including cattle. In view to verify that oocytes maintain germinal vesicle like molecular activities under roscovitine treatment, we compared in the present study the M-phase Promoting Factor (MPF) and Mitogen Activated Protein (MAP) kinase activities; protein synthesis and phosphorylation patterns in oocytes and cumulus cells; and CDK1 and Cyclin B messengers storage under control culture and under roscovitine inhibition. We observed that roscovitine induced a full and reversible inhibition of MPF kinase activity and of the activating phosphorylation of both ERK1/2 MAPK. During in vivo maturation, there was a highly significant increase in the relative mRNA level of both cyclin B1 and CDK1 whereas during in vitro culture, the relative amount of CDK1 messenger was reduced. These messengers may be used as markers for the optimization of in vitro maturation treatment. Roscovitine reversibly prevented this drop in relative quantities of CDK1 messenger. Oocytes cultured in the presence of roscovitine maintained a GV like profile of protein synthesis except that two proteins of 48 and 64 kDa specific of matured oocytes also appeared under roscovitine treatment. However, roscovitine did not prevent most of the modifications of protein phosphorylation pattern observed during maturation. In conclusion, results of this study revealed that the use of roscovitine did not prevent all the events related to maturation of bovine oocytes. Mol. Reprod. Dev. 69: 457,465, 2004. © 2004 Wiley-Liss, Inc. [source] In vitro Capacitation and Acrosome Reaction of Dog Spermatozoa can be Feasibly Attained in a Defined Medium Without GlucoseREPRODUCTION IN DOMESTIC ANIMALS, Issue 3 2004JL Albarracín Contents Incubation of dog spermatozoa in a medium without glucose and in the presence of lactate and pyruvate (l-CCM) for 4 h at 38.5°C in a 5% CO2 atmosphere induced in vitro capacitation of these cells. This was verified after the combined specific capacitation-like changes in percentages of viability and altered acrosomes, motility characteristics, sperm location of reactivity against Pisum sativum, Arachis hypogaea and Helix pomatia lectins and the tyrosine phosphorylation pattern. Furthermore, a feasible acrosome reaction (AR) was induced when spermatozoa incubated in l-CCM for 4 h were further co-incubated for 1 h with canine oocytes. This was demonstrated by AR-like changes in percentages of viability, altered acrosomes, motility characteristics and sperm location of reactivity against P. sativum, A. hypogaea and H. pomatia lectins. All these results clearly indicate that in vitro capacitation, and subsequent AR, can be feasibly achieved without the presence of sugars. This ability can be related to the specific characteristics of energy-metabolism regulation reported in dog spermatozoa. [source] Macrophage exposure to particulate titanium induces phosphorylation of the protein tyrosine kinase lyn and the phospholipases C,-1 and C,-2JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 3 2002Phillip L. Palmbos A frequent long-term complication of total joint arthroplasty is aseptic loosening, the end result of wear debris production, synovial macrophage activation, inflammatory mediator release, and osteolysis about the implant,bone or cement,bone interface. To elucidate the mechanisms of particle-induced macrophage activation and mediator production, we studied early signal transduction events using J774A.1 macrophages and 3 ,m titanium particles. Treating macrophages with herbimycin A or genistein, two inhibitors of protein tyrosine kinases (PTKs), inhibited titanium phagocytosis as well as secretion of tumor necrosis factor-, (TNF-,) and prostaglandin-E2 (PGE2) in a dose-dependent manner. Both processes therefore depend on a PTK signaling cascade. Specifically, macrophage exposure to titanium-induced phosphorylation of multiple proteins including the Src kinase Lyn and phospholipase C,-1 and C,-2. Phosphorylation peaked within 2 min and returned to baseline within 45 min. Similar but not identical phosphorylation patterns were obtained when cells were stimulated with titanium preincubated with serum or albumin, suggesting distinct signal transduction pathways dependent on particle coating. © 2002 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved. [source] Differential phosphorylation of myosin light chain (Thr)18 and (Ser)19 and functional implications in plateletsJOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 10 2010T. M. GETZ Summary. Background:, Myosin IIA is an essential platelet contractile protein that is regulated by phosphorylation of its regulatory light chain (MLC) on residues (Thr)18 and (Ser)19 via the myosin light chain kinase (MLCK). Objective:, The present study was carried out to elucidate the mechanisms regulating MLC (Ser)19 and (Thr)18 phosphorylation and the functional consequence of each phosphorylation event in platelets. Results:, Induction of 2MeSADP-induced shape change occurs within 5 s along with robust phosphorylation of MLC (Ser)19 with minimal phosphorylation of MLC (Thr)18. Selective activation of G12/13 produces both slow shape change and comparably slow MLC (Thr)18 and (Ser)19 phosphorylation. Stimulation with agonists that trigger ATP secretion caused rapid MLC (Ser)19 phosphorylation while MLC (Thr)18 phosphorylation was coincident with secretion. Platelets treated with p160ROCK inhibitor Y-27632 exhibited a partial inhibition in secretion and had a substantial inhibition in MLC (Thr)18 phosphorylation without effecting MLC (Ser)19 phosphorylation. These data suggest that phosphorylation of MLC (Ser)19 is downstream of Gq/Ca2+ -dependent mechanisms and sufficient for shape change, whereas MLC (Thr)18 phosphorylation is substantially downstream of G12/13 -regulated Rho kinase pathways and necessary, probably in concert with MLC (Ser)19 phosphorylation, for full contractile activity leading to dense granule secretion. Overall, we suggest that the amplitude of the platelet contractile response is differentially regulated by a least two different signaling pathways, which lead to different phosphorylation patterns of the myosin light chain, and this mechanism results in a graded response rather than a simple on/off switch. [source] Protein synthesis and mRNA storage in cattle oocytes maintained under meiotic block by roscovitine inhibition of MPF activityMOLECULAR REPRODUCTION & DEVELOPMENT, Issue 4 2004Céline Vigneron Abstract Roscovitine, a specific inhibitor of MPF kinase activity, has been shown to block efficiently and reversibly the meiotic resumption of oocytes from different species, including cattle. In view to verify that oocytes maintain germinal vesicle like molecular activities under roscovitine treatment, we compared in the present study the M-phase Promoting Factor (MPF) and Mitogen Activated Protein (MAP) kinase activities; protein synthesis and phosphorylation patterns in oocytes and cumulus cells; and CDK1 and Cyclin B messengers storage under control culture and under roscovitine inhibition. We observed that roscovitine induced a full and reversible inhibition of MPF kinase activity and of the activating phosphorylation of both ERK1/2 MAPK. During in vivo maturation, there was a highly significant increase in the relative mRNA level of both cyclin B1 and CDK1 whereas during in vitro culture, the relative amount of CDK1 messenger was reduced. These messengers may be used as markers for the optimization of in vitro maturation treatment. Roscovitine reversibly prevented this drop in relative quantities of CDK1 messenger. Oocytes cultured in the presence of roscovitine maintained a GV like profile of protein synthesis except that two proteins of 48 and 64 kDa specific of matured oocytes also appeared under roscovitine treatment. However, roscovitine did not prevent most of the modifications of protein phosphorylation pattern observed during maturation. In conclusion, results of this study revealed that the use of roscovitine did not prevent all the events related to maturation of bovine oocytes. Mol. Reprod. Dev. 69: 457,465, 2004. © 2004 Wiley-Liss, Inc. [source] The Ca2+ -dependent protein kinase CPK3 is required for MAPK-independent salt-stress acclimation in ArabidopsisTHE PLANT JOURNAL, Issue 3 2010Norbert Mehlmer Summary Plants use different signalling pathways to respond to external stimuli. Intracellular signalling via calcium-dependent protein kinases (CDPKs) or mitogen-activated protein kinases (MAPKs) present two major pathways that are widely used to react to a changing environment. Both CDPK and MAPK pathways are known to be involved in the signalling of abiotic and biotic stresses in animal, yeast and plant cells. Here, we show the essential function of the CDPK CPK3 (At4g23650) for salt stress acclimation in Arabidopsis thaliana, and test crosstalk between CPK3 and the major salt-stress activated MAPKs MPK4 and MPK6 in the salt stress response. CPK3 kinase activity was induced by salt and other stresses after transient overexpression in Arabidopsis protoplasts, but endogenous CPK3 appeared to be constitutively active in roots and leaves in a strictly Ca2+ -dependent manner. cpk3 mutants show a salt-sensitive phenotype comparable with mutants in MAPK pathways. In contrast to animal cells, where crosstalk between Ca2+ and MAPK signalling is well established, CPK3 seems to act independently of those pathways. Salt-induced transcriptional induction of known salt stress-regulated and MAPK-dependent marker genes was not altered, whereas post-translational protein phosphorylation patterns from roots of wild type and cpk3 plants revealed clear differences. A significant portion of CPK3 was found to be associated with the plasma membrane and the vacuole, both depending on its N -terminal myristoylation. An initial proteomic study led to the identification of 28 potential CPK3 targets, predominantly membrane-associated proteins. [source] |