Phosphorus Magnetic Resonance Spectroscopy (phosphorus + magnetic_resonance_spectroscopy)

Distribution by Scientific Domains


Selected Abstracts


Breakdown of adenine nucleotide pool in fatiguing skeletal muscle in McArdle's disease: A noninvasive 31P-MRS and EMG study

MUSCLE AND NERVE, Issue 6 2003
Jochen Zange PhD
Abstract Energy metabolism and electrical muscle activity were studied in the calf muscles of 19 patients with proven McArdle's disease and in 25 healthy subjects. Phosphorus magnetic resonance spectroscopy and surface electromyography (S-EMG) were performed during two isometric muscle contractions of 3 min at 30% maximum voluntary contraction, one performed during normal perfusion and the other during applied ischemia. After about 1 min of ischemic muscle contraction in diseased muscle a significant acceleration in phosphocreatine breakdown was observed, along with a significant decrease in adenosine triphosphate. During both contractions the absence of glycolysis was shown by a significant alkalinization. Furthermore, in patients we observed a greater increase in the S-EMG amplitude than in control subjects. We conclude that early on during moderate exercise, a small number of muscle fibers reach metabolic depletion, indicated by a reduction in the adenine nucleotide pool. An increasing number of motor units, which are still in a high-energy state, are continuously recruited to compensate for muscle fatigue. This functional compartmentation may contribute to the pathophysiology of exercise intolerance in McArdle's disease. Muscle Nerve 27: 728,736, 2003 [source]


Effects of Abstinence From Alcohol on the Broad Phospholipid Signal in Human Brain: An In Vivo 31P Magnetic Resonance Spectroscopy Study

ALCOHOLISM, Issue 8 2001
M. R. Estilaei
Background: In vivo phosphorus magnetic resonance spectroscopy (31P MRS) at a magnetic field strength of 1.5 T allows measurement of fairly mobile membrane phospholipids in the human brain. We previously showed that subjects who are heavy drinkers had a smaller signal and a shorter transverse relaxation time (T2) of white matter phospholipids than light drinkers, which suggested lower concentrations and molecular mobility of phospholipids in heavy drinkers. The purpose of the present study was to measure if such chronic alcohol-induced white matter tissue changes are persistent in long-term abstinent alcoholics. Methods: Fourteen abstinent alcoholics (mean age 45 years, seven men and seven women) were studied by localized 31P MRS in the centrum semiovale and were compared with 13 male, alcohol-dependent, heavy drinkers and 23 nondependent light drinkers (17 men, 6 women) of similar age. Methods for measurements of the broad membrane phospholipid signal and its relaxation time were described previously. Results: Phospholipid concentrations and relaxation times in alcoholics abstinent for an average of 31 months were not significantly different from those measured in light drinkers. The contribution of fast and slowly relaxing signal components to the broad phospholipid signal, however, was still different in abstinent alcoholics compared with light drinkers. No effects of sex or of family history of alcoholism were noted on any of our spectroscopic measures within the light-drinking or abstinent groups. Conclusions: Most of our results suggest at least partial recovery of chronic alcohol-induced white matter phospholipid damage with long-term abstinence. They offer myelination changes and/or dendritic rearborization as a possible mechanism for the commonly observed white matter volume gain with prolonged abstinence. But the results also suggest a persistent abnormality in the nature and/or physical properties of white matter phospholipids in long-term abstinent alcoholics. [source]


Caffeine impairs intramuscular energy balance in patients susceptible to malignant hyperthermia

MUSCLE AND NERVE, Issue 3 2003
Zoran Textor MD
Abstract Malignant hyperthermia (MH) is a metabolic myopathy with an abnormal release of calcium by the sarcoplasmic reticulum (SR), triggered by volatile anesthetics and succinylcholine. Similarly, caffeine enhances Ca2+release by the SR in vitro. In a prospective, randomized study, high-energy phosphates were studied by intramuscular 31-phosphorus magnetic resonance spectroscopy (31P-MRS) in 10 MH-susceptible (MHS) and 7 MH-nonsusceptible (MHN) subjects before and after injection of 0.5 ml caffeine (20 mM). Intramuscular energy balance, measured by the ratios of Pi/PCr and Pi/,-ATP, did not differ between MHS and MHN patients before and after intramuscular caffeine injection. However, within each group, Pi/PCr and Pi/,-ATP increased significantly only in the MHS group. Intramuscular caffeine injection seemed to impair the metabolic balance in MHS individuals. This may reflect a local calcium overload leading to consumption of high-energy phosphates and increase of inorganic phosphate. Intramuscular stimulation by caffeine and 31P-MRS may provide a valuable tool to investigate MH-related metabolic disturbances. Muscle Nerve 28: 353,358, 2003 [source]


Metabolic costs of force generation for constant-frequency and catchlike-inducing electrical stimulation in human tibialis anterior muscle

MUSCLE AND NERVE, Issue 3 2002
Aivaras Ratkevicius PhD
Abstract Metabolic costs of force generation were compared for constant-frequency and catchlike-inducing electrical stimulation. Repetitive catchlike-inducing trains consisted of 2 interpulse intervals (IPIs) at 12.5 ms, 1 IPI at 25 ms, and 5 IPIs at 50 ms. Constant-frequency trains consisted of 8 IPIs at 37.5 ms. One train was delivered to the peroneal nerve every 2.5 s for 36 times under ischemic conditions. Anaerobic adenosine triphosphate (ATP) turnover was determined using 31-phosphorus magnetic resonance spectroscopy (P-MRS) of the human tibialis anterior muscle. Compared with constant-frequency trains, catchlike-inducing trains produced a faster force generation and were more effective in maintaining the force,time integral as well as peak force. However, ATP costs of force generation were similar for the catchlike-inducing and constant-frequency stimulation (6.7 ± 1.1 and 6.6 ± 1.0 ,mol ATP/kg wet weight/N·s, respectively, P = 0.601). This suggests that the positive effects of catchlike-inducing stimulation on force maintenance are mediated by potentiated Ca2+ release from the sarcoplasmic reticulum rather than by lower metabolic costs of muscle force generation. Our findings also suggest that catchlike-inducing stimulation produces larger forces in fatigued muscle than constant-frequency trains and thus may be beneficial for muscle training or rehabilitation when muscle loading needs to be maintained in repetitive contractions. © 2002 Wiley Periodicals, Inc. Muscle Nerve 25: 000,000, 2002 [source]