Home About us Contact | |||
Phosphate Synthase (phosphate + synthase)
Kinds of Phosphate Synthase Selected AbstractsAKIN,1 is Involved in the Regulation of Nitrogen Metabolism and Sugar Signaling in ArabidopsisJOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 5 2009Xiao-Fang Li Abstract Sucrose non-fermenting-1-related protein kinase 1 (SnRK1) has been located at the heart of the control of metabolism and development in plants. The active SnRK1 form is usually a heterotrimeric complex. Subcellular localization and specific target of the SnRK1 kinase are regulated by specific beta subunits. In Arabidopsis, there are at least seven genes encoding beta subunits, of which the regulatory functions are not yet clear. Here, we tried to study the function of one beta subunit, AKIN,1. It showed that AKIN,1 expression was dramatically induced by ammonia nitrate but not potassium nitrate, and the investigation of AKIN,1 transgenic Arabidopsis and T-DNA insertion lines showed that AKIN,1 negatively regulated the activity of nitrate ruductase and was positively involved in sugar repression in early seedling development. Meanwhile AKIN,1 expression was reduced upon sugar treatment (including mannitol) and did not affect the activity of sucrose phosphate synthase. The results indicate that AKIN,1 is involved in the regulation of nitrogen metabolism and sugar signaling. [source] Effects of Elevated CO2 on Growth, Carbon Assimilation, Photosynthate Accumulation and Related Enzymes in Rice Leaves during Sink-Source TransitionJOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 6 2008Jun-Ying Li Abstract To study the effects of growing rice (Oryza sativa L.) leaves under the treatment of the short-term elevated CO2 during the period of sink-source transition, several physiological processes such as dynamic changes in photosynthesis, photosynthate accumulation, enzyme activities (sucrose phosphate synthase (SPS), and sucrose synthase (SS)), and their specific gene (sps1 and RSus1) expressions in both mature and developing leaf were measured. Rice seedlings with fully expanded sixth leaf (marked as the source leaf, L6) were kept in elevated (700 ,mol/mol) and ambient (350 mol/L) CO2 until the 7th leaf (marked as the sink leaf, L7) fully expanded. The results demonstrated that elevated CO2 significantly increased the rate of leaf elongation and biomass accumulation of L7 during the treatment without affecting the growth of L6. However, in both developing and mature leaves, net photosynthetic assimilation rate (A), all kinds of photosynthate contents such as starch, sucrose and hexose, activities of SPS and SS and transcript levels of sps1 and RSus1 were significantly increased under elevated CO2 condition. Results suggested that the elevated CO2 had facilitated photosynthate assimilation, and increased photosynthate supplies from the source leaf to the sink leaf, which accelerated the growth and sink-source transition in new developing sink leaves. The mechanisms of SPS regulation by the elevated CO2 was also discussed. [source] EFFECT OF NUTRIENT DEPRIVATION AND RESUPPLY ON METABOLITES AND ENZYMES RELATED TO CARBON ALLOCATION IN GRACILARIA TENUISTIPITATA (RHODOPHYTA),JOURNAL OF PHYCOLOGY, Issue 2 2004Pi Nyvall Collén The starch content of red algae normally increases during nitrogen limitation. Based on this we hypothesized that nutrient deprivation would result in an increased activity of starch-synthesizing enzymes and a decrease in the activity of starch-degrading enzymes, with the opposite scenario when nutrients were sufficient. We therefore examined the effect of the nutrient status of Gracilaria tenuistipitata Chang et Xia on the content of starch and floridoside and on the activity of enzymes involved in the allocation of carbon into starch, floridoside, and agar; floridoside phosphate synthase and ,-galactosidase involved in synthesis and degradation of floridoside; starch synthase and starch phosphorylase involved in the metabolism of starch; uridine 5,-diphosphate (UDP)-glucose pyrophosphorylase; adenosine 5,-diphosphate-glucose pyrophosphorylase; UDP-glucose 4-epimerase; and phosphoglucomutase. During the period of nutrient limitation the starch and floridoside content increased, as did dry weight and C/N ratio, whereas growth rate and protein content decreased. A general decrease in the enzyme activities during nutrient limitation was also observed, indicating a decrease in overall cellular metabolism. The addition of nutrients caused an increase in enzyme activities and a decrease in the contents of starch and floridoside. Of the enzymes examined, only the activity of UDP-glucose pyrophosphorylase increased during nutrient limitation and decreased abruptly after nutrient addition. This implies a regulatory role for this enzyme in the supply of UDP-glucose for starch synthesis. It also supports our suggestion that UDP-glucose is the substrate for starch synthesis in red algae. This assertion is further strengthened by the observation that of the potential starch synthases only the UDP-glucose starch synthase could support the observed rate of starch synthesis. [source] Crops with target-site herbicide resistance for Orobanche and Striga controlPEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 5 2009Jonathan Gressel Abstract It is necessary to control root parasitic weeds before or as they attach to the crop. This can only be easily achieved chemically with herbicides that are systemic, or with herbicides that are active in soil. Long-term control can only be attained if the crops do not metabolise the herbicide, i.e. have target-site resistance. Such target-site resistances have allowed foliar applications of herbicides inhibiting enol-pyruvylshikimate phosphate synthase (EPSPS) (glyphosate), acetolactate synthase (ALS) (e.g. chlorsulfuron, imazapyr) and dihydropteroate synthase (asulam) for Orobanche control in experimental conditions with various crops. Large-scale use of imazapyr as a seed dressing of imidazolinone-resistant maize has been commercialised for Striga control. Crops with two target-site resistances will be more resilient to the evolution of resistance in the parasite, if well managed. Copyright © 2009 Society of Chemical Industry [source] Transgenic salt-tolerant sugar beet (Beta vulgaris L.) constitutively expressing an Arabidopsis thaliana vacuolar Na+/H+ antiporter gene, AtNHX3, accumulates more soluble sugar but less salt in storage rootsPLANT CELL & ENVIRONMENT, Issue 9 2008HUA LIU ABSTRACT In Arabidopsis thaliana, six vacuolar Na+/H+ antiporters (AtNHX1-6) were identified. Among them, AtNHX1, 2 and 5 are functional Na+/H+ antiporters with the most abundant expression levels in seedling shoots and roots. However, the expression of AtNHX3 in Arabidopsis can only be detected by RT-PCR, and its physiological function still remains unclear. In this work, we demonstrate that constitutive expression of AtNHX3 in sugar beet (Beta vulgaris L.) conferred augmented resistance to high salinity on transgenic plants. In the presence of 300 or 500 mm NaCl, transgenic plants showed very high potassium accumulation in the roots and storage roots. Furthermore, the transcripts of sucrose phosphate synthase (SPS), sucrose synthase (SS) and cell wall sucrose invertase (SI) genes were maintained in transgenic plants. The accumulation of soluble sugar in the storage roots of transgenic plants grown under high salt stress condition was also higher. Our results implicate that AtNHX3 is also a functional antiporter responsible for salt tolerance by mediating K+/H+ exchange in higher plants. The salt accumulation in leaves but not in the storage roots, and the increased yield of storage roots with enhanced constituent soluble sugar contents under salt stress condition demonstrate a great potential use of this gene in improving the quality and yield of crop plants. [source] The role of inorganic phosphate in the development of freezing tolerance and the acclimatization of photosynthesis to low temperature is revealed by the pho mutants of Arabidopsis thalianaTHE PLANT JOURNAL, Issue 3 2000Vaughan Hurry Summary Low temperature inhibits sucrose synthesis, leading to a phosphate-limitation of photosynthesis. We have used the Arabidopsis pho1-2 and pho2-1 mutants with decreased and increased shoot phosphate, respectively, to investigate whether low phosphate triggers cold acclimatization of photosynthetic carbon metabolism. Wild-type Arabidopsis, pho1-2 and pho2-1 were grown at 23°C and transferred to 5°C to investigate acclimatization in pre-existing leaves and in new leaves developing at 5°C. The development of frost tolerance and the accumulation of proline and sugars was unaltered or improved in pho1-2, and impaired in pho2-1. Sucrose phosphate synthase and cytoplasmic fructose-1,6-bisphosphatase activity and protein increase after transfer to 5°C. This increase was accentuated in pho1-2 and attenuated in pho2-1. RBCS and LHCB2 transcript levels decrease in pre-formed wild-type leaves after transfer to 5°C and recover in new leaves that develop at 5°C. The initial decrease was attenuated in pho1-2, and accentuated in pho2-1, where the recovery in new leaves was also suppressed. Rubisco activity increased in wild-type leaves that developed at 5°C. This increase was accentuated in pho1-2 and absent in pho2-1. NADP-glyceraldehyde-3-phosphate dehydrogenase, plastidic fructose-1,6-bisphosphatase and aldolase activity increase relative to phosphoglycerate kinase, transketolase and phosphoribulokinase in wild-type leaves at 5°C. This shift was accentuated in pho1-2 and reversed in pho2-1. Transcript levels for COR genes increase transiently 1 day after transfer to 5°C but were very low in leaves that developed at 5°C in wild-type Arabidopsis, pho1-2 and pho2-1. We conclude that low phosphate plays an important role in triggering cold acclimatization of leaves, leading in particular to an increase of Rubisco expression, changes in other Calvin cycle enzymes to minimize sequestration of phosphate in metabolites, and increased expression of sucrose biosynthesis enzymes. [source] Developmental control of inositol phosphate biosynthesis is altered in the brain of both curly and phenotypically normal straight tail mutant mice,BIRTH DEFECTS RESEARCH, Issue 10 2009Hana Dawood Ali Alebous Abstract BACKGROUND: Altered levels of inositol phosphate in the central nervous system (CNS) are hypothesized to produce distorted brain signaling and lead to numerous neurologic maladies. Little is known of mechanisms controlling the complex metabolic flux of inositol phosphate. Less is known of controls that regulate inositol-phosphate biosynthesis in the mammalian brain. The expression of 1L-myo-inositol,1 phosphate synthase (MIP), the only enzyme known to synthesize inositol phosphate, was studied in the brain of normal (CBA) and curly tail (CT) mutant mice. The CT strain exhibits a neural tube defect, spina bifida, responsive to inositol supplementation, but not to folic acid treatment. METHODS: Utilizing enzyme assays to determine the specific activity of MIP, Western blotting to detect expression, gas chromatography/mass spectrometry to measure inositol concentration, and statistical analyses to evaluate quantitative data, MIP expression was analyzed in newborn, young, and adult brains of CBA and CT (curly tail [ct-CT] and straight tail [st-CT]) mutant mice. RESULTS: Data analyses suggest there is a significant difference in MIP activity in the brain of CBA mice as compared to that of CT mutant mice and that temporal and spatial control of MIP expression and inositol concentrations are altered in the brain of both the ct-CT and phenotypically normal st-CT mutant. Moreover, two differentially expressed forms of MIP were identified in the adult mouse brain. CONCLUSIONS: These findings implicate a role for MIP in the maturation of the CNS and evoke a hypothesis regarding the regulation of inositol phosphate biosynthesis in brain development. Birth Defects Research (Part A), 2009. © 2009 Wiley-Liss, Inc. [source] |