Phenytoin

Distribution by Scientific Domains
Distribution within Medical Sciences

Kinds of Phenytoin

  • free phenytoin

  • Terms modified by Phenytoin

  • phenytoin concentration

  • Selected Abstracts


    Region-specific changes in gene expression in rat brain after chronic treatment with levetiracetam or phenytoin

    EPILEPSIA, Issue 9 2010
    Bjørnar Hassel
    Summary Purpose:, It is commonly assumed that antiepileptic drugs (AEDs) act similarly in the various parts of the brain as long as their molecular targets are present. A few experimental studies on metabolic effects of vigabatrin, levetiracetam, valproate, and lamotrigine have shown that these drugs may act differently in different brain regions. We examined effects of chronic treatment with levetiracetam or phenytoin on mRNA levels to detect regional drug effects in a broad, nonbiased manner. Methods:, mRNA levels were monitored in three brain regions with oligonucleotide-based microarrays. Results:, Levetiracetam (150 mg/kg for 90 days) changed the expression of 65 genes in pons/medulla oblongata, two in hippocampus, and one in frontal cortex. Phenytoin (75 mg/kg), in contrast, changed the expression of only three genes in pons/medulla oblongata, but 64 genes in hippocampus, and 327 genes in frontal cortex. Very little overlap between regions or drug treatments was observed with respect to effects on gene expression. Discussion:, We conclude that chronic treatment with levetiracetam or phenytoin causes region-specific and highly differential effects on gene expression in the brain. Regional effects on gene expression could reflect regional differences in molecular targets of AEDs, and they could influence the clinical profiles of AEDs. [source]


    Pregabalin Drug Interaction Studies: Lack of Effect on the Pharmacokinetics of Carbamazepine, Phenytoin, Lamotrigine, and Valproate in Patients with Partial Epilepsy

    EPILEPSIA, Issue 9 2005
    Martin J. Brodie
    Summary:,Purpose: Pregabalin (PGB) is an ,2 -, ligand with demonstrated efficacy in epilepsy, neuropathic pain, and anxiety disorders. PGB is highly efficacious as adjunctive therapy in patients with refractory partial seizures. Methods: Given its efficacy as adjunctive therapy, the potential for interaction of PGB with other antiepileptic drugs (AEDs) was assessed in patients with partial epilepsy in open-label, multiple-dose studies. Patients received PGB, 600 mg/day (200 mg q8h) for 7 days, in combination with their individualized maintenance monotherapy with valproate (VPA), phenytoin (PHT), lamotrigine (LTG), or carbamazepine (CBZ). Results: Trough steady-state concentrations of CBZ (and its epoxide metabolite), PHT, LTG, and VPA were unaffected by concomitant PGB administration. Likewise, PGB steady-state pharmacokinetic parameter values were similar among patients receiving CBZ, PHT, LTG, or VPA and, in general, were similar to those observed historically in healthy subjects receiving PGB alone. The PGB,AED combinations were generally well tolerated. PGB may be added to VPA, LTG, PHT, or CBZ therapy without concern for pharmacokinetic drug,drug interactions. [source]


    Add-on Phenytoin Fails to Prevent Early Seizures after Surgery for Supratentorial Brain Tumors: A Randomized Controlled Study

    EPILEPSIA, Issue 2 2002
    Antonio De Santis
    Summary: ,Purpose: To determine the potential effectiveness of phenytoin (PHT) in preventing early postoperative seizures in patients undergoing craniotomy for supratentorial brain tumors. Methods: Two hundred patients requiring elective craniotomy for supratentorial brain tumors were randomized to two groups of equal size, with a prospective, open-label, controlled design. One group received PHT (18 mg/kg as an intravenous intraoperative load, followed by additional daily doses aimed at maintaining serum PHT concentrations within the 10- to 20-æg/ml range) for 7 consecutive days. In the other group, PHT was not administered. More than 90% of patients in both groups continued to take preexisting anticonvulsant medication (AEDs) with carbamazepine or phenobarbital throughout the study. The primary efficacy end point was the number of patients remaining free from seizures during the 7-day period after the operation. Results: Of 100 patients allocated to PHT, 13 experienced seizures during the 7-day observation period, compared with 11 of 100 patients in the placebo group (p > 0.05). Most seizures occurred in the first day after surgery in both groups. There were no differences between groups in the proportion of patients experiencing more than one seizure, but there was a trend for generalized seizures to be more common in PHT-treated patients than in controls (11 vs. five patients, respectively). Status epilepticus occurred in one patient in the PHT group and in two patients in the control group. Of the 13 PHT-treated seizure patients, 11 had serum PHT concentrations within the target range, and only two had concentrations below range on the days their seizures occurred. Conclusions: PHT, given at dosages producing serum concentrations within the target range, failed to prevent early postoperative seizures in patients treated with concomitant AEDs. Prophylactic administration of PHT cannot be recommended in these patients. [source]


    Antiepileptogenesis and Seizure Prevention Trials with Antiepileptic Drugs: Meta-Analysis of Controlled Trials

    EPILEPSIA, Issue 4 2001
    Nancy R. Temkin
    Summary: ,Purpose: To synthesize evidence concerning the effect of antiepileptic drugs (AEDs) for seizure prevention and to contrast their effectiveness for provoked versus unprovoked seizures. Methods: Medline, Embase, and The Cochrane Clinical Trials Register were the primary sources of trials, but all trials found were included. Minimal requirements: seizure-prevention outcome given as fraction of cases; AED or control assigned by random or quasi-random mechanism. Single abstracter. Aggregate relative risk and heterogeneity evaluated using Mantel,Haenszel analyses; random effects model used if heterogeneity was significant. Results: Forty-seven trials evaluated seven drugs or combinations for preventing seizures associated with fever, alcohol, malaria, perinatal asphyxia, contrast media, tumors, craniotomy, and traumatic brain injury. Effective: Phenobarbital for recurrence of febrile seizures [relative risk (RR), 0.51; 95% confidence interval (CI), 0.32,0.82) and cerebral malaria (RR, 0.36; CI, 0.23,0.56). Diazepam for contrast media,associated seizures (RR, 0.10; CI, 0.01,0.79). Phenytoin for provoked seizures after craniotomy or traumatic brain injury (craniotomy: RR, 0.42; CI, 0.25,0.71; TBI: RR, 0.33; CI, 0.19,0.59). Carbamazepine for provoked seizures after traumatic brain injury (RR, 0.39; CI, 0.17,0.92). Lorazepam for alcohol-related seizures (RR, 0.12; CI, 0.04,0.40). More than 25% reduction ruled out valproate for unprovoked seizures after traumatic brain injury (RR, 1.28; CI, 0.76,2.16), and carbamazepine for unprovoked seizures after craniotomy (RR, 1.30; CI, 0.75,2.25). Conclusions: Effective or promising results predominate for provoked (acute, symptomatic) seizures. For unprovoked (epileptic) seizures, no drug has been shown to be effective, and some have had a clinically important effect ruled out. [source]


    Brugada Pattern Electrocardiogram Associated with Supratherapeutic Phenytoin Levels and the Risk of Sudden Death

    PACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 5 2007
    BASEL AL ALOUL M.D.
    The emergence of Brugada pattern on electrocardiogram in response to class IA or IC antiarrhythmic agents is widely utilized to diagnose concealed Brugada syndrome and recognized as a risk factor for sudden death. Phenytoin, a class IB antiarrhythmic agent, has not been reported to induce Brugada pattern. We report a patient who presented with Brugada electrocardiogram at supratherapeutic phenytoin level. Considering that patients with syncope may falsely be labeled to have seizures and some epilepsy patients are at increased risk of sudden death, all patients with supratherapeutic phenytoin level should be evaluated with an electrocardiogram for emergence of Brugada pattern. [source]


    Neonatal cerebral ischaemia with elevated maternal and infant anticardiolipin antibodies

    DEVELOPMENTAL MEDICINE & CHILD NEUROLOGY, Issue 6 2000
    Gabriel Chow MBBChir BSc DCH MRCPI MRCPCH
    A baby girl born by elective lower segment caesarean section was found to have left-sided focal seizures at 48 hours after birth. Her mother had previously had a neonatal death at 26 weeks' gestation and another child born at 32 weeks' gestation had a congenital right hemiplegia with a left middle cerebral artery infarct on CT scan. The mother had raised anticardiolipin IgG antibodies at the time of delivery of her second child, with no thrombotic symptoms. Therefore, during this pregnancy, she had been treated with low molecular weight heparin and aspirin. The baby's mother had raised IgG and IgM anticardiolipin antibodies and the baby had IgG anticardiolipin antibodies at the upper range of normal 4 days after delivery. The seizures were controlled with phenobarbitone and phenytoin. CT and MRI scans showed evidence of cerebral ischaemia. A repeat MRI scan at 4 months of age was normal, anticonvulsants were discontinued, and her latest neurological examination at 5 months was normal. [source]


    Preclinical abuse potential assessment of the anticonvulsant zonisamide

    DRUG DEVELOPMENT RESEARCH, Issue 2 2001
    Jenny L. Wiley
    Abstract Zonisamide (Zonegran®) is a broad-spectrum antiepileptic agent that shares some pharmacological properties with other anticonvulsants, including phenytoin, carbamazepine, and valproic acid, but is differentiated from these agents by the ability to significantly block T-type calcium channels. Zonisamide interacts with the ,-amino-butyric acid (GABA) receptor in an allosteric manner, and thus does not modulate GABA receptor effects. However, given the potential of drugs within the latter class for drug abuse in humans, an evaluation of zonisamide for abuse potential is an important component of its potential side-effect profile. In the present study, zonisamide was tested in animal models of the subjective and reinforcing effects of central nervous system (CNS) depressant drugs, e.g., diazepam discrimination in rats and intravenous self-administration in rhesus monkeys, respectively. In addition, zonisamide was evaluated for physical dependence liability in a chronic infusion model using rats. Zonisamide did not substitute for diazepam in rats trained to discriminate 2.5-mg/kg diazepam from vehicle nor was it self-administered by rhesus monkeys experienced in methohexital-reinforced responding. Continuous infusion of zonisamide (400 or 600 mg/kg/day) did not prevent the loss of body weight associated with discontinued pentobarbital infusion. These doses of zonisamide did produce some incomplete attenuation of observable signs of pentobarbital withdrawal, likely due to direct sedative or depressant effects of these high doses. These results suggest that zonisamide would not produce diazepam-like intoxication in humans nor would it likely be subject to abuse when made more widely available. Further, when administered chronically, zonisamide would not be expected to produce physical dependence of the CNS depressant type. Taken together, these results support the prediction that zonisamide would have low abuse liability. Drug Dev. Res. 54:66,74, 2001. © 2001 Wiley-Liss, Inc. [source]


    Region-specific changes in gene expression in rat brain after chronic treatment with levetiracetam or phenytoin

    EPILEPSIA, Issue 9 2010
    Bjørnar Hassel
    Summary Purpose:, It is commonly assumed that antiepileptic drugs (AEDs) act similarly in the various parts of the brain as long as their molecular targets are present. A few experimental studies on metabolic effects of vigabatrin, levetiracetam, valproate, and lamotrigine have shown that these drugs may act differently in different brain regions. We examined effects of chronic treatment with levetiracetam or phenytoin on mRNA levels to detect regional drug effects in a broad, nonbiased manner. Methods:, mRNA levels were monitored in three brain regions with oligonucleotide-based microarrays. Results:, Levetiracetam (150 mg/kg for 90 days) changed the expression of 65 genes in pons/medulla oblongata, two in hippocampus, and one in frontal cortex. Phenytoin (75 mg/kg), in contrast, changed the expression of only three genes in pons/medulla oblongata, but 64 genes in hippocampus, and 327 genes in frontal cortex. Very little overlap between regions or drug treatments was observed with respect to effects on gene expression. Discussion:, We conclude that chronic treatment with levetiracetam or phenytoin causes region-specific and highly differential effects on gene expression in the brain. Regional effects on gene expression could reflect regional differences in molecular targets of AEDs, and they could influence the clinical profiles of AEDs. [source]


    Antiepileptic drugs combined with high-frequency electrical stimulation in the ventral hippocampus modify pilocarpine-induced status epilepticus in rats

    EPILEPSIA, Issue 3 2010
    Manola Cuellar-Herrera
    Summary Purpose:, To evaluate the effects of high-frequency electrical stimulation (HFS) in both ventral hippocampi, alone and combined with a subeffective dose of antiepileptic drugs, during the status epilepticus (SE) induced by lithium-pilocarpine (LP). Methods:, Male Wistar rats, stereotactically implanted in both ventral hippocampi, were injected with pilocarpine (30 mg/kg, i.p.) 24 h after lithium (3 mEq/kg) administration. One minute following pilocarpine injection, HFS (pulses of 60 ,s width at 130 Hz at subthreshold intensities and applied during 3 h) was applied alone or combined with subeffective doses of antiepileptic drugs. Results:, HFS alone reduced the incidence of severe generalized seizures. This effect was not evident when HFS was combined with phenytoin (33.3 mg/kg, i.p.). HFS combined with diazepam (0.41 mg/kg, i.p.) or phenobarbital (10 mg/kg, i.p.) reduced the incidence of severe generalized seizures and mortality rate, and augmented the latency to first forelimb clonus, generalized seizure, and status epilepticus (SE). When combined with gabapentin (46 mg/kg, i.p.), HFS reduced the incidence of severe generalized seizures, enhanced latency to SE, and decreased mortality rate. Discussion:, Subeffective doses of antiepileptic drugs that increase the ,-aminobutyric acid (GABA)ergic neurotransmission may represent a therapeutic tool to augment the HFS-induced anticonvulsant effects. [source]


    Management issues for women with epilepsy,Focus on pregnancy (an evidence-based review): II.

    EPILEPSIA, Issue 5 2009
    Teratogenesis, perinatal outcomes
    Summary A committee assembled by the American Academy of Neurology (AAN) reassessed the evidence related to the care of women with epilepsy (WWE) during pregnancy, including antiepileptic drug (AED) teratogenicity and adverse perinatal outcomes. It is highly probable that intrauterine first-trimester valproate (VPA) exposure has higher risk of major congenital malformations (MCMs) compared to carbamazepine (CBZ), and possibly compared to phenytoin (PHT) or lamotrigine (LTG). It is probable that VPA as part of polytherapy and possible that VPA as monotherapy contribute to the development of MCMs. AED polytherapy probably contributes to the development of MCMs and reduced cognitive outcomes compared to monotherapy. Intrauterine exposure to VPA monotherapy probably reduces cognitive outcomes and monotherapy exposure to PHT or phenobarbital (PB) possibly reduces cognitive outcomes. Neonates of WWE taking AEDs probably have an increased risk of being small for gestational age and possibly have an increased risk of a 1-minute Apgar score of <7. If possible, avoidance of VPA and AED polytherapy during the first trimester of pregnancy should be considered to decrease the risk of MCMs. If possible, avoidance of VPA and AED polytherapy throughout pregnancy should be considered and avoidance of PHT and PB throughout pregnancy may be considered to prevent reduced cognitive outcomes. [source]


    Blood,brain barrier damage and brain penetration of antiepileptic drugs: Role of serum proteins and brain edema

    EPILEPSIA, Issue 4 2009
    Nicola Marchi
    Summary Purpose:, Increased blood,brain barrier (BBB) permeability is radiologically detectable in regions affected by drug-resistant epileptogenic lesions. Brain penetration of antiepileptic drugs (AEDs) may be affected by BBB damage. We studied the effects of BBB damage on brain distribution of hydrophilic [deoxy-glucose (DOG) and sucrose] and lipophilic (phenytoin and diazepam) molecules. We tested the hypothesis that lipophilic and hydrophilic drug distribution is differentially affected by BBB damage. Methods:, In vivo BBB disruption (BBBD) was performed in rats by intracarotid injection of hyperosmotic mannitol. Drugs (H3-sucrose, 3H-deoxy-glucose, 14C-phenytoin, and C14-diazepam) or unlabeled phenytoin was measured and correlated to brain water content and protein extravasation. In vitro hippocampal slices were exposed to different osmolarities; drug penetration and water content were assessed by analytic and densitometric methods, respectively. Results:, BBBD resulted in extravasation of serum protein and radiolabeled drugs, but was associated with no significant change in brain water. Large shifts in water content in brain slices in vitro caused a small effect on drug penetration. In both cases, total drug permeability increase was greater for lipophilic than hydrophilic compounds. BBBD reduced the amount of free phenytoin in the brain. Discussion:, After BBBD, drug binding to protein is the main controller of total brain drug accumulation. Osmotic BBBD increased serum protein extravasation and reduced free phenytoin brain levels. These results underlie the importance of brain environment and BBB integrity in determining drug distribution to the brain. If confirmed in drug-resistant models, these mechanisms could contribute to drug brain distribution in refractory epilepsies. [source]


    The clinical impact of pharmacogenetics on the treatment of epilepsy

    EPILEPSIA, Issue 1 2009
    Wolfgang Löscher
    Summary Drug treatment of epilepsy is characterized by unpredictability of efficacy, adverse drug reactions, and optimal doses in individual patients, which, at least in part, is a consequence of genetic variation. Since genetic variability in drug metabolism was reported to affect the treatment with phenytoin more than 25 years ago, the ultimate goal of pharmacogenetics is to use the genetic makeup of an individual to predict drug response and efficacy, as well as potential adverse drug events. However, determining the practical relevance of pharmacogenetic variants remains difficult, in part because of problems with study design and replication. This article reviews the published work with particular emphasis on pharmacogenetic alterations that may affect efficacy, tolerability, and safety of antiepileptic drugs (AEDs), including variation in genes encoding drug target (SCN1A), drug transport (ABCB1), drug metabolizing (CYP2C9, CYP2C19), and human leucocyte antigen (HLA) proteins. Although the current studies associating particular genes and their variants with seizure control or adverse events have inherent weaknesses and have not provided unifying conclusions, several results, for example that Asian patients with a particular HLA allele, HLA-B*1502, are at a higher risk for Stevens-Johnson syndrome when using carbamazepine, are helpful to increase our knowledge how genetic variation affects the treatment of epilepsy. Although genetic testing raises ethical and social issues, a better understanding of the genetic influences on epilepsy outcome is key to developing the much needed new therapeutic strategies for individuals with epilepsy. [source]


    Seizure type, antiepileptic drugs, and reproductive endocrine dysfunction in Indian women with epilepsy: A cross-sectional study

    EPILEPSIA, Issue 12 2008
    Preeti Sahota
    Summary Background:, There is paucity of data regarding occurrence of reproductive endocrine disorders in Asian women with epilepsy (WWE) on antiepileptic drug (AED) therapy. Purpose:, To determine the occurrence of reproductive endocrine disorders in Indian WWE, by seizure type and the AED use. Methods:, Consecutive 427 reproductive age WWE receiving various AEDs were screened for the occurrence of menstrual abnormalities, weight change, and hirsutism. Of these, 53 WWE with menstrual disturbances and/or hirsutism were further evaluated for ovarian morphology and reproductive hormonal profile. Results:, Menstrual abnormalities and/or hirsutism were observed in 83 of 427 (19.4%) WWE irrespective of epileptic seizure type; of these, 50 (60.2%) received valproate, 21 (25.3%) received carbamazepine, 11 (13.3%) received phenytoin, and one (1.2%) received phenobarbitone as the primary AED. Almost half of valproate-treated women had significant weight gain and obesity. Among 53 of 83 women evaluated further, 23.5% and 63.6% of valproate-treated women, 25% and 58.3% of carbamazepine-treated women, and none and 20% of phenytoin-treated women had polycystic ovaries (PCO) and hyperandrogenemia (HA), respectively. Valproate-treated women had significantly higher frequency of polycystic ovarian syndrome (PCOS) (11.8% vs. 2.5%, p < 0.0001) and mean serum testrosterone levels (1.78 vs. 1.36 ng/ml, p = 0.03), compared with women treated with other AEDs. Limitations:, Limitations include small number of women in antiepileptic subgroups and a high drop out rate in women who underwent ultrasound and endocrinological investigations. Conclusion:, Menstrual abnormalities, weight gain, obesity, and PCOS are frequent and significantly higher in WWE receiving valproate, independent of seizure type. [source]


    Rufinamide: Clinical pharmacokinetics and concentration,response relationships in patients with epilepsy

    EPILEPSIA, Issue 7 2008
    Emilio Perucca
    Summary Rufinamide is a new, orally active antiepileptic drug (AED), which has been found to be effective in the treatment of partial seizures and drop attacks associated with the Lennox-Gastaut syndrome. When taken with food, rufinamide is relatively well absorbed in the lower dose range, with approximately dose-proportional plasma concentrations up to 1,600 mg/day, but less than dose-proportional plasma concentrations at higher doses due to reduced oral bioavailability. Rufinamide is not extensively bound to plasma proteins. During repeated dosing, steady state is reached within 2 days, consistent with its elimination half-life of 6,10 h. The apparent volume of distribution (Vd/F) and apparent oral clearance (CL/F) are related to body size, the best predictor being body surface area. Rufinamide is not a substrate of cytochrome P450 (CYP450) enzymes and is extensively metabolized via hydrolysis by carboxylesterases to a pharmacologically inactive carboxylic acid derivative, which is excreted in the urine. Rufinamide pharmacokinetics are not affected by impaired renal function. Potential differences in rufinamide pharmacokinetics between children and adults have not been investigated systematically in formal studies. Although population pharmacokinetic modeling suggests that in the absence of interacting comedication rufinamide CL/F may be higher in children than in adults, a meaningful comparison of data across age groups is complicated by age-related differences in doses and in proportion of patients receiving drugs known to increase or to decrease rufinamide CL/F. A study investigating the effect of rufinamide on the pharmacokinetics of the CYP3A4 substrate triazolam and an oral contraceptive interaction study showed that rufinamide has some enzyme-inducing potential in man. Findings from population pharmacokinetic modeling indicate that rufinamide does not modify the CL/F of topiramate or valproic acid, but may slightly increase the CL/F of carbamazepine and lamotrigine and slightly decrease the CL/F of phenobarbital and phenytoin (all predicted changes were <20%). These changes in the pharmacokinetics of associated AEDs are unlikely to make it necessary to change the dosages of these AEDs given concomitantly with rufinamide, with the exception that consideration should be given to reducing the dose of phenytoin. Based on population pharmacokinetic modeling, lamotrigine, topiramate, or benzodiazepines do not affect the pharmacokinetics of rufinamide, but valproic acid may increase plasma rufinamide concentrations, especially in children in whom plasma rufinamide concentrations could be increased substantially. Conversely, comedication with carbamazepine, vigabatrin, phenytoin, phenobarbital, and primidone was associated with a slight-to-moderate decrease in plasma rufinamide concentrations, ranging from a minimum of ,13.7% in female children comedicated with vigabatrin to a maximum of ,46.3% in female adults comedicated with phenytoin, phenobarbital, or primidone. In population modeling using data from placebo-controlled trials, a positive correlation has been identified between reduction in seizure frequency and steady-state plasma rufinamide concentrations. The probability of adverse effects also appears to be concentration-related. [source]


    Clinical picture of EPM1-Unverricht-Lundborg disease

    EPILEPSIA, Issue 4 2008
    Reetta Kälviäinen
    Summary Unverricht-Lundborg disease (ULD), progressive myoclonic epilepsy type 1 (EPM1, OMIM254800), is an autosomal recessively inherited neurodegenerative disorder characterized by age of onset from 6 to 16 years, stimulus-sensitive myoclonus, and tonic,clonic epileptic seizures. Some years after the onset ataxia, incoordination, intentional tremor, and dysarthria develop. Individuals with EPM1 are mentally alert but show emotional lability, depression, and mild decline in intellectual performance over time. The diagnosis of EPM1 can be confirmed by identifying disease-causing mutations in a cysteine protease inhibitor cystatin B (CSTB) gene. Symptomatic pharmacologic and rehabilitative management, including psychosocial support, are the mainstay of EPM1 patients' care. Valproic acid, the first drug of choice, diminishes myoclonus and the frequency of generalized seizures. Clonazepam and high-dose piracetam are used to treat myoclonus, whereas levetiracetam seems to be effective for both myoclonus and generalized seizures. There are a number of agents that aggravate clinical course of EPM1 such as phenytoin aggravating the associated neurologic symptoms or even accelerating cerebellar degeneration. Sodium channel blockers (carbamazepine, oxcarbazepine) and GABAergic drugs (tiagabine, vigabatrin) as well as gabapentin and pregabalin may aggravate myoclonus and myoclonic seizures. EPM1 patients need lifelong clinical follow-up, including evaluation of the drug-treatment and comprehensive rehabilitation. [source]


    Upregulation of Brain Expression of P-Glycoprotein in MRP2-deficient TR - Rats Resembles Seizure-induced Up-regulation of This Drug Efflux Transporter in Normal Rats

    EPILEPSIA, Issue 4 2007
    Katrin Hoffmann
    Summary:,Purpose: The multidrug resistance protein 2 (MRP2) is a drug efflux transporter that is expressed predominantly at the apical domain of hepatocytes but seems also to be expressed at the apical membrane of brain capillary endothelial cells that form the blood,brain barrier (BBB). MRP2 is absent in the transport-deficient (TR,) Wistar rat mutant, so that this rat strain was very helpful in defining substrates of MRP2 by comparing tissue concentrations or functional activities of compounds in MRP2-deficient rats with those in transport-competent Wistar rats. By using this strategy to study the involvement of MRP2 in brain access of antiepileptic drugs (AEDs), we recently reported that phenytoin is a substrate for MRP2 in the BBB. However, one drawback of such studies in genetically deficient rats is the fact that compensatory changes with upregulation of other transporters can occur. This prompted us to study the brain expression of P-glycoprotein (Pgp), a major drug efflux transporter in many tissues, including the BBB, in TR, rats compared with nonmutant (wild-type) Wistar rats. Methods: The expression of MRP2 and Pgp in brain and liver sections of TR, rats and normal Wistar rats was determined with immunohistochemistry, by using a novel, highly selective monoclonal MRP2 antibody and the monoclonal Pgp antibody C219, respectively. Results: Immunofluorescence staining with the MRP2 antibody was found to label a high number of microvessels throughout the brain in normal Wistar rats, whereas such labeling was absent in TR, rats. TR, rats exhibited a significant up-regulation of Pgp in brain capillary endothelial cells compared with wild-type controls. No such obvious upregulation of Pgp was observed in liver sections. A comparable overexpression of Pgp in the BBB was obtained after pilocarpine-induced seizures in wild-type Wistar rats. Experiments with systemic administration of the Pgp substrate phenobarbital and the selective Pgp inhibitor tariquidar in TR, rats substantiated that Pgp is functional and compensates for the lack of MRP2 in the BBB. Conclusions: The data on TR, rats indicate that Pgp plays an important role in the compensation of MRP2 deficiency in the BBB. Because such a compensatory mechanism most likely occurs to reduce injury to the brain from cytotoxic compounds, the present data substantiate the concept that MRP2 performs a protective role in the BBB. Furthermore, our data suggest that TR, rats are an interesting tool to study consequences of overexpression of Pgp in the BBB on access of drugs in the brain, without the need of inducing seizures or other Pgp-enhancing events for this purpose. [source]


    Epileptic Seizures Superimposed on Catatonic Stupor

    EPILEPSIA, Issue 4 2006
    Kazumasa Suzuki
    Summary:,Purpose: Some patients with nonconvulsive status epilepticus are known to exhibit catatonic stupor. Thus it is necessary to rule out ictal catatonia by electroencephalography in patients with catatonic stupor. However, few reports are available on epileptic seizures superimposed on catatonic stupor. Methods: We report three cases of epileptic seizures superimposed on psychiatric catatonic stupor without a prominent predisposing factor, including high fever or encephalitis. None of the patients had a personal or family history of neurologic disease, including epilepsy. Results: In all three patients, catatonic stupor persisted after resolution of the epileptic seizures with administration of phenytoin. In two of the three patients, catatonic stupor resolved with electroconvulsive therapy, which caused no marked adverse effects. Conclusions: Because it is possible that catatonic stupor itself predisposes patients to the development of epileptic seizures, electroencephalographic examinations in patients with catatonic stupor are indispensable for early recognition not only of nonconvulsive status epilepticus but also of epileptic seizures superimposed on catatonic stupor. Electroconvulsive therapy deserves consideration when catatonic stupor persists after resolution of epileptic seizures. [source]


    Pregabalin Drug Interaction Studies: Lack of Effect on the Pharmacokinetics of Carbamazepine, Phenytoin, Lamotrigine, and Valproate in Patients with Partial Epilepsy

    EPILEPSIA, Issue 9 2005
    Martin J. Brodie
    Summary:,Purpose: Pregabalin (PGB) is an ,2 -, ligand with demonstrated efficacy in epilepsy, neuropathic pain, and anxiety disorders. PGB is highly efficacious as adjunctive therapy in patients with refractory partial seizures. Methods: Given its efficacy as adjunctive therapy, the potential for interaction of PGB with other antiepileptic drugs (AEDs) was assessed in patients with partial epilepsy in open-label, multiple-dose studies. Patients received PGB, 600 mg/day (200 mg q8h) for 7 days, in combination with their individualized maintenance monotherapy with valproate (VPA), phenytoin (PHT), lamotrigine (LTG), or carbamazepine (CBZ). Results: Trough steady-state concentrations of CBZ (and its epoxide metabolite), PHT, LTG, and VPA were unaffected by concomitant PGB administration. Likewise, PGB steady-state pharmacokinetic parameter values were similar among patients receiving CBZ, PHT, LTG, or VPA and, in general, were similar to those observed historically in healthy subjects receiving PGB alone. The PGB,AED combinations were generally well tolerated. PGB may be added to VPA, LTG, PHT, or CBZ therapy without concern for pharmacokinetic drug,drug interactions. [source]


    Characterization of the Tetanus Toxin Model of Refractory Focal Neocortical Epilepsy in the Rat

    EPILEPSIA, Issue 2 2005
    Karen E. Nilsen
    Summary:,Purpose: To characterize in detail a model of focal neocortical epilepsy. Methods: Chronic focal epilepsy was induced by injecting 25,50 ng of tetanus toxin or vehicle alone (controls) into the motor neocortex of rats. EEG activity was recorded from electrodes implanted at the injection site, along with facial muscle electromyographic (EMG) activity and behavioral monitoring intermittently for up to 5 months in some animals. Drug responsiveness was assessed by using the antiepileptic drugs (AEDs) diazepam (DZP) and phenytoin (PHT) delivered systemically, while 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide (NBQX), a competitive antagonist at AMPA receptors, was administered directly to the brain to investigate the potential benefits of focal drug delivery. Results: Tetanus toxin induced mild behavioral seizures that persisted indefinitely in all animals. EEG spiking activity, occurring up to 80% of the time, correlated with clinical seizures consisting of interrupted behavioral activity, rhythmic bilateral facial twitching, and periods of abrupt motor arrest. Seizures were refractory to systemic administration of DZP and PHT. However, focal delivery of NBQX to the seizure site reversibly reduced EEG and behavioral seizure activity without detectable side effects. Conclusions: This study provides a long-term detailed characterisation of the tetanus toxin model. Spontaneous, almost continuous, well-tolerated seizures occur and persist, resembling those seen in neocortical epilepsy, including cortical myoclonus and epilepsia partialis continua. The seizures appear to be similarly resistant to conventional AEDs. The consistency, frequency, and clinical similarity of the seizures to refractory epilepsy in humans make this an ideal model for investigation of both mechanisms of seizure activity and new therapeutic approaches. [source]


    Interaction between Anticonvulsants and Human Placental Carnitine Transporter

    EPILEPSIA, Issue 3 2004
    Shu-Pei Wu
    Summary: Purpose: To examine the inhibitory effect of anticonvulsants (AEDs) on carnitine transport by the human placental carnitine transporter. Methods: Uptake of radiolabeled carnitine by human placental brush-border membrane vesicles was measured in the absence and presence of tiagabine (TGB), vigabatrin (VGB), gabapentin (GBP), lamotrigine (LTG), topiramate (TPM), valproic acid (VPA), and phenytoin (PHT). The mechanism of the inhibitory action of TGB was determined. Results: Most of the AEDs inhibited placental carnitine transport. Kinetic analyses showed that TGB had the greatest inhibitory effect [50% inhibitory concentration (IC50, 190 ,M)], and the order of inhibitory potency was TGB > PHT > GBP > VPA > VGB, TPM > LTG. Further studies showed that TGB competitively inhibited carnitine uptake by the human placental carnitine transporter, suggesting that it may be a substrate for this carrier. Conclusions: Although the involvement of carnitine deficiency in fetal anticonvulsant syndrome requires further evaluation, potential interference with placental carnitine transport by several AEDs was demonstrated. Despite the higher inhibitory potency of TGB, given the therapeutic unbound concentrations, the results for VPA and PHT are probably more clinically significant. [source]


    Effects of Antiepileptic Drugs on Refractory Seizures in the Intact Immature Corticohippocampal Formation In Vitro

    EPILEPSIA, Issue 11 2003
    Pascale Paule Quilichini
    Summary:,Purpose: We developed a new in vitro preparation of immature rats, in which intact corticohippocampal formations (CHFs) depleted in magnesium ions become progressively epileptic. The better to characterize this model, we examined the effects of 14 antiepileptic drugs (AEDs) currently used in clinical practice. Methods: Recurrent ictal-like seizures (ILEs, four per hour) were generated in intact CHFs of P7,8 rats, and extracellular recordings were performed in the hippocampus and neocortex. AEDs were applied at clinically relevant concentrations (at least two), during 30 min after the third ILE. Their ability to prevent or to delay the next ILE was examined. Results: Valproic acid and benzodiazepines (clobazam and midazolam) but also phenobarbital and levetiracetam prevent the occurrence of seizures. In contrast, usual concentrations of carbamazepine (CBZ), phenytoin, vigabatrin, tiagabine, gabapentin, lamotrigine (LTG), topiramate, felbamate, and ethosuximide did not suppress ILEs. In addition, LTG and CBZ aggravate seizures in one third of the cases. Conclusions: This intact in vitro preparation in immature animals appears to be quite resistant to most AEDs. Blockade of seizures was achieved with drugs acting mainly at the ,-aminobutyric acid (GABA)A -receptor site but not with those that increase the amount of GABA. Drugs with a broad spectrum of activity are efficient but not those preferentially used in partial seizures or absences. We suggest that this preparation may correspond to a model of epilepsy with generalized convulsive seizures and could be helpful to develop new AEDs for refractory infantile epilepsies. [source]


    Valproate Suppresses Status Epilepticus Induced by 4-Aminopyridine in CA1 Hippocampus Region

    EPILEPSIA, Issue 11 2003
    Eduardo D. Martín
    Summary:,Purpose: We investigated the effects of valproate (VPA) on an in vivo model of status epilepticus (SE) induced by intrahippocampal application of 4-aminopyridine (4-AP). Methods: To induce continuous epileptiform activity without a clinical component, 4-AP (100 mM) was slowly injected in the hippocampus of adult rats. Extracellular field potential from the CA1 region of the rat hippocampus was recorded to assess abnormal epileptiform activity. Once the SE seizures were induced by 4-AP, the test drug was injected. In some experiments to test the ability of a drug to prevent the induction of SE, the drug was administered before 4-AP injection. Results: Intrahippocampal injection of 4-AP induced continuous epileptic activity without a clinical component that lasted >60 min. The intravenous injection of 400,600 mg/kg VPA rapidly (,100 s) abolished the SE, and this effect persisted for ,4 h in our experimental model. The intravenous injection of 100,300 mg/kg VPA did not abolish previously induced SE, but prevented the appearance of SE when applied before the induction of SE. The intravenous injection of 80 mg/kg phenytoin or carbamazepine did not abolish or prevent SE. Conclusions: We conclude that 4-AP,induced SE was suppressed by VPA at 400,600 mg/kg, whereas minor doses (100,300 mg/kg) only prevent the 4-AP,induced SE. Present results suggest the revisiting of VPA as a useful drug for the treatment of SE. [source]


    A Kindling Model of Pharmacoresistant Temporal Lobe Epilepsy in Sprague,Dawley Rats Induced by Coriaria Lactone and Its Possible Mechanism

    EPILEPSIA, Issue 4 2003
    Ying Wang
    Summary: ,Purpose: The aim of this study was to develop a new animal model of pharmacoresistant temporal lobe epilepsy (TLE) by repeated intramuscular injection of Coriaria lactone (CL) at subthreshold dosages and to explore the mechanisms that might be involved. Methods: Healthy male Sprague,Dawley rats (n = 160) were randomized into four groups during the kindling process: three groups (n = 50 for each group) received CL injection at subthreshold dosages (1.25, 1.5, and 1.75 mg/kg, respectively), and ten received normal saline (NS) injection as a control group. The maximal human adult dosage of carbamazepine (CBZ), valproate (VPA), and phenytoin (PHT) was administered as monotherapy to different groups of kindled rats for 1 month (n = 20 for each group). Changes in EEG recording, seizure number, intensity (expressed as grade 1,5 according to Racine stage), and duration, including spontaneous seizures during different interventions, were compared. The expression of P-170, a multiple drug resistance gene (MDR1) encoding P-glycoprotein, was measured in brain samples from different groups of experimental rats by using an image analysis and measurement system (ImagePro-Plus 4.0). Results: A total of 70 (46.7%) rats were fully kindled with a median of 15 (seven to 20) CL injections. Electrocorticogram (ECoG) including hippocampal (EHG) monitoring revealed the temporal lobe origins of epileptiform potentials, which were consistent with the behavioral changes observed. Spontaneous seizures occurred with frequency and diurnal patterns similar to those of human TLE. The antiepileptic drugs (AEDs) tested lacked a satisfactory seizure control. The maximal P-170 expression was in the kindled rats with AED treatment; the next highest was in the kindled rats without AED intervention. Nonkindled SD rats with CL injection also had increased P-170 expression compared with control SD rats. Conclusions: The study provided a simple and stable animal TLE kindling model with pharmacoresistant properties. The pharmacoresistance observed in the kindled rats to CBZ, VPA, and PHT at maximal human adult dosages together with the increased P-170 expression was a distinct feature of this model. This model might be used in further investigations of the mechanisms involved in pharmacoresistant TLE and for developing new AEDs. [source]


    Interactions Between Oxcarbazepine and Conventional Antiepileptic Drugs in the Maximal Electroshock Test in Mice: An Isobolographic Analysis

    EPILEPSIA, Issue 4 2003
    Jarogniew J. Luszczki
    Summary: ,Purpose: The aim of this study was to determine the types of interactions between oxcarbazepine (OCBZ) and conventional antiepileptic drugs (AEDs) against maximal electroshock-induced seizures (MES test) in mice, by using a method of isobolographic analysis. Methods: Adverse effects of combinations were evaluated in the chimney test (motor performance), also using the isobolographic method, which allowed determination of the median toxic dose (TD50) values for individual combinations; thus the protective indices could be determined. Results: OCBZ and phenytoin (PHT) at the fixed-ratio combination of 1:1 were significantly infraadditive (antagonistic) with respect to the antiseizure protection against MES and simultaneously additive in terms of side effects in the chimney test. Interestingly, combinations between OCBZ and clonazepam (CZP) in the MES test proved antagonistic or synergistic, depending on the proportion of both AEDs in the mixture. Low doses of OCBZ with high doses of CZP exerted antagonism. Conversely, high doses of OCBZ combined with low doses of CZP resulted in a synergistic interaction. Remaining combinations between OCBZ and phenobarbital, valproate, or carbamazepine were purely additive, either as regards the anticonvulsant activity against MES or in terms of motor impairment in the chimney test. Conclusions: The results of this study indicate that interaction of OCBZ and CZP at fixed-ratio combination of 1:1 might be profitable from a clinical point of view. Conversely, combinations of OCBZ with PHT may not be clinically efficient. [source]


    Embryonic Arrhythmia by Inhibition of HERG Channels: A Common Hypoxia-related Teratogenic Mechanism for Antiepileptic Drugs?

    EPILEPSIA, Issue 5 2002
    Faranak Azarbayjani
    Summary: ,Purpose: There is evidence that drug-induced embryonic arrhythmia initiates phenytoin (PHT) teratogenicity. The arrhythmia, which links to the potential of PHT to inhibit a specific potassium channel (Ikr), may result in episodes of embryonic ischemia and generation of reactive oxygen species (ROS) at reperfusion. This study sought to determine whether the proposed mechanism might be relevant for the teratogenic antiepileptic drug trimethadione (TMO). Methods: Effects on embryonic heart rhythm during various stages of organogenesis were examined in CD-1 mice after maternal administration (125,1,000 mg/kg) of dimethadione (DMO), the pharmacologically active metabolite of TMO. Palatal development was examined after administration of a teratogenic dose of DMO and after simultaneous treatment with DMO and a ROS-capturing agent (,-phenyl- N -tert-butyl-nitrone; PBN). The Ikr blocking potentials of TMO and DMO were investigated in HERG-transfected cells by using voltage patch-clamping tests. Results: DMO caused stage-specific (gestation days 9,13 only) and dose-dependent embryonic bradycardia and arrhythmia at clinically relevant maternal plasma concentrations (3,11 mM). Hemorrhage in the nasopharyngeal part of the embryonic palate (within 24 h) preceded cleft palate in fetuses at term. Simultaneous treatment with PBN significantly reduced the incidence of DMO-induced cleft palate, from 40 to 13%. Voltage patch-clamping studies showed that particularly DMO (70% inhibition), but also TMO, had Ikr blocking potential at clinically relevant concentrations. Conclusions: TMO teratogenicity, in the same way as previously shown for PHT, was associated with Ikr -mediated episodes of embryonic cardiac arrhythmia and hypoxia/reoxygenation damage. [source]


    Add-on Phenytoin Fails to Prevent Early Seizures after Surgery for Supratentorial Brain Tumors: A Randomized Controlled Study

    EPILEPSIA, Issue 2 2002
    Antonio De Santis
    Summary: ,Purpose: To determine the potential effectiveness of phenytoin (PHT) in preventing early postoperative seizures in patients undergoing craniotomy for supratentorial brain tumors. Methods: Two hundred patients requiring elective craniotomy for supratentorial brain tumors were randomized to two groups of equal size, with a prospective, open-label, controlled design. One group received PHT (18 mg/kg as an intravenous intraoperative load, followed by additional daily doses aimed at maintaining serum PHT concentrations within the 10- to 20-æg/ml range) for 7 consecutive days. In the other group, PHT was not administered. More than 90% of patients in both groups continued to take preexisting anticonvulsant medication (AEDs) with carbamazepine or phenobarbital throughout the study. The primary efficacy end point was the number of patients remaining free from seizures during the 7-day period after the operation. Results: Of 100 patients allocated to PHT, 13 experienced seizures during the 7-day observation period, compared with 11 of 100 patients in the placebo group (p > 0.05). Most seizures occurred in the first day after surgery in both groups. There were no differences between groups in the proportion of patients experiencing more than one seizure, but there was a trend for generalized seizures to be more common in PHT-treated patients than in controls (11 vs. five patients, respectively). Status epilepticus occurred in one patient in the PHT group and in two patients in the control group. Of the 13 PHT-treated seizure patients, 11 had serum PHT concentrations within the target range, and only two had concentrations below range on the days their seizures occurred. Conclusions: PHT, given at dosages producing serum concentrations within the target range, failed to prevent early postoperative seizures in patients treated with concomitant AEDs. Prophylactic administration of PHT cannot be recommended in these patients. [source]


    Teratogenic Effects of Antiepileptic Drugs: Use of an International Database on Malformations and Drug Exposure (MADRE)

    EPILEPSIA, Issue 11 2000
    Carla Arpino
    Summary: Purpose: The study goal was to assess teratogenic effects of antiepileptic drugs (AEDs) through the use of a surveillance system (MADRE) of infants with malformations. Methods: Information on all malformed infants (1990,1996) with maternal first-trimester drug exposure was collected by the International Clearinghouse for Birth Defects and Monitoring Systems (ICBDMS). Cases were defined as infants presenting with a specific malformation, and controls were defined as infants presenting with any other birth defect. Exposure was defined by the use of AEDs during the first trimester of pregnancy. The association of AEDs with malformations was then estimated by calculating the odds ratios with 95% confidence intervals and testing their homogeneity among registries. Results: Among 8005 cases of malformations, 299 infants were exposed in utero to AEDs. Of those exposed to monotherapy, 65 were exposed to phenobarbital, 10 to methylphenobarbital, 80 to valproic acid, 46 to carbamazepine, 24 to phenytoin, and 16 to other AEDs. Associations were found for spina bifida with valproic acid. Infants exposed to phenobarbital and to methylphenobarbital showed an increased risk of oral clefts. Cardiac malformations were found to be associated with phenobarbital, methylphenobarbital, valproic acid, and carbamazepine. Hypospadias was associated with valproic acid. Porencephaly and other specified anomalies of brain, anomalies of face, coarctation of aorta, and limb reduction defects were found to be associated with valproic acid. Conclusions: Using the MADRE system, we confirmed known teratogenic effects of AEDs. We also found increased risks for malformations that had never been reported associated with AEDs or for which the association was suggested by case reports. [source]


    Anticonvulsant Efficacy of Topiramate in Phenytoin-Resistant Kindled Rats

    EPILEPSIA, Issue 4 2000
    Elke Reissmüller
    Summary: Purpose: We evaluated the anticonvulsant efficacy of topiramate (TPM), a structurally novel antiepileptic drug (AED), in amygdala kindled rats that had been preselected with respect to their response to phenytoin (PHT). Methods: Anticonvulsant response was tested by determining the afterdischarge threshold (ADT;i.e., a sensitive measure for drug effects on focal seizure activity). By repeated testing with the PHT prodrug fosphenytoin (FOS) three groups of kindled rats were separated: rats in which consistent anticonvulsant effects were obtained (PHT responders), rats that showed no anticonvulsant response (PHT nonresponders), and rats with variable responses (variable PHT responders). The latter, largest group was used to evaluate at which doses and pretreatment times TPM exerted significant anticonvulsant effects on ADT. For this purpose, TPM was tested at four doses (20, 40, 80, 160 mg/kg i.p.) and two pretreatment times (1 and 4 h). The most effective treatment protocol was then used for TPM testing in PHT responders and nonresponders. Results: TPM proved to be an effective AED in the kindling model. At 40 mg/kg, significant ADT increases were obtained after both 1 and 4 h after administration. In addition to the effect on focal seizure threshold, seizure severity and duration recorded at ADT were decreased by TPM, indicating that this drug acts on both seizure threshold and seizure spread. In PHT nonresponders, TPM significantly increased ADT, which is in line with its proven efficacy in patients with refractory partial epilepsy in whom phenytoin has failed. However, TPM was more efficacious in increasing ADT in PHT responders than in nonresponders, substantiating that the difference between these groups of kindled rats extends to other AEDs. Repeated testing of kindled rats with TPM indicated that, similar to PHT, there are individual kindled rats without anticonvulsant response to TPM (i.e., TPM nonresponders). Conclusions: The data of this study substantiate that PHT nonresponders are a unique model for the search of new AEDs with improved efficacy in refractory partial epilepsy. [source]


    Felbamate in Experimental Model of Status Epilepticus

    EPILEPSIA, Issue 2 2000
    Andrey M. Mazarati
    Summary: Purpose: To examine the putative seizure-protective properties of felbarnate in an animal model of self-sustaining status epilepticus (SSSE). Methods: SSSE was induced by 30-min stimulation of the perforant path (PPS) through permanently implanted electrodes in free-running male adult Wistar rats. Felbarnate (FBM; 50, 100, and 200 mg/kg), dizepam (DZP; 10 mg/kg), or phenytoin (PHT; 50 mg/kg) were injected i.v. 10 min after SSSE induction. Electrographic manifestations of SSSE and the severity of SSSE-induced neuronal injury were analyzed. Results: Felbamate injected during the early stages of SSSE (10 min after the end of PPS), shortened the duration of seizures in a dose-dependent manner. Total time spent in seizures after FBM and 290 ± 251 min (50 mg/kg), 15.3 ± 9 min (100 mg/kg), and 7 ± 1 min (200 mg/kg), whereas control animals spent 410 ± 133 min seizing. This effect of FBM was stronger than that of DZP (10 mg/kg, 95 ± 22 min) and comparable to that of PHT (50 mg/kg, 6.3 ± 2.5 min). In the applied doses, FBM (200 mg/kg) was more effective than PHT (50 mg/kg) or DZP (10 mg/kg) in shortening seizure duration and decreasing spike frequency, when administered on the pleateau of SSSE (injection 40 min after the end of PPS). Anticonvulsant action of FBM was confirmed by milder neuronal injury compared with control animals. Conclusions: Felbamate, a clinically available AED with a moderate affinity for the glycine site of the NMDA receptor, displayed a potent seizure-protective effect in an animal model of SSSE. These results suggest that FBM might be useful when standard AEDs fail in the treatment of refractory cases of SE. [source]


    Ocular complications of neurological therapy

    EUROPEAN JOURNAL OF NEUROLOGY, Issue 7 2005
    S. Hadjikoutis
    Treatments used for several neurological conditions may adversely affect the eye. Vigabatrin-related retinal toxicity leads to a visual field defect. Optic neuropathy may result from ethambutol and isoniazid, and from radiation therapy. Posterior subcapsular cataract is associated with systemic corticosteroids. Transient refractive error changes may follow treatment with acetazolamide or topiramate, and corneal deposits and keratitis with amandatine. Intraocular pressure can be elevated in susceptible individuals by anticholinergic drugs, including oxybutynin, tolterodine, benzhexol, propantheline, atropine and amitriptyline, and also by systemic corticosteroids and by topiramate. Nystagmus, diplopia and extraocular muscle palsies can occur with antiepileptic drugs, particularly phenytoin and carbamazepine. Ocular neuromyotonia can follow parasellar radiation. Congenital ocular malformations can result from in utero exposure to maternally prescribed sodium valproate, phenytoin and carbamazepine. Neurologists must be aware of potential ocular toxicity of these drugs, and appropriately monitor for potential adverse events. [source]