Phenylalanine Hydroxylase (phenylalanine + hydroxylase)

Distribution by Scientific Domains


Selected Abstracts


Deamidation of labile asparagine residues in the autoregulatory sequence of human phenylalanine hydroxylase

FEBS JOURNAL, Issue 5 2003
Structural, functional implications
Two dimensional electrophoresis has revealed a microheterogeneity in the recombinant human phenylalanine hydroxylase (hPAH) protomer, that is the result of spontaneous nonenzymatic deamidations of labile asparagine (Asn) residues [Solstad, T. and Flatmark, T. (2000) Eur. J. Biochem.267, 6302,6310]. Using of a computer algorithm, the relative deamidation rates of all Asn residues in hPAH have been predicted, and we here verify that Asn32, followed by a glycine residue, as well as Asn28 and Asn30 in a loop region of the N-terminal autoregulatory sequence (residues 19,33) of wt-hPAH, are among the susceptible residues. First, on MALDI-TOF mass spectrometry of the 24 h expressed enzyme, the E. coli 28-residue peptide, L15,K42 (containing three Asn residues), was recovered with four monoisotopic mass numbers (i.e., m/z of 3106.455, 3107.470, 3108.474 and 3109.476, of decreasing intensity) that differed by 1 Da. Secondly, by reverse-phase chromatography, isoaspartyl (isoAsp) was demonstrated in this 28-residue peptide by its methylation by protein- l -isoaspartic acid O -methyltransferase (PIMT; EC 2.1.1.77). Thirdly, on incubation at pH 7.0 and 37 °C of the phosphorylated form (at Ser16) of this 28-residue peptide, a time-dependent mobility shift from tR,,34 min to ,,31 min (i.e., to a more hydrophilic position) was observed on reverse-phase chromatography, and the recovery of the tR,,34 min species decreased with a biphasic time-course with t0.5 -values of 1.9 and 6.2 days. The fastest rate is compatible with the rate determined for the sequence-controlled deamidation of Asn32 (in a pentapeptide without 3D structural interference), i.e., a deamidation half-time of ,,1.5 days in 150 mm Tris/HCl, pH 7.0 at 37 °C. Asn32 is located in a cluster of three Asn residues (Asn28, Asn30 and Asn32) of a loop structure stabilized by a hydrogen-bond network. Deamidation of Asn32 introduces a negative charge and a partial ,-isomerization (isoAsp), which is predicted to result in a change in the backbone conformation of the loop structure and a repositioning of the autoregulatory sequence and thus affect its regulatory properties. The functional implications of this deamidation was further studied by site-directed mutagenesis, and the mutant form (Asn32,Asp) revealed a 1.7-fold increase in the catalytic efficiency, an increased affinity and positive cooperativity of L-Phe binding as well as substrate inhibition. [source]


Microheterogeneity of recombinant human phenylalanine hydroxylase as a result of nonenzymatic deamidations of labile amide containing amino acids

FEBS JOURNAL, Issue 20 2000
Effects on catalytic, stability properties
The microheterogeneity of recombinant human phenylalanine hydroxylase (hPAH) was investigated by isoelectric focusing and 2D electrophoresis. When expressed in Escherichia coli four main components (denoted hPAH I-IV) of ,,50 kDa were observed on long-term induction at 28,37 °C with isopropyl thio-,- d -galactoside (IPTG), differing in pI by about 0.1 pH unit. A similar type of microheterogeneity was observed when the enzyme was expressed (1 h at 37 °C) in an in vitro transcription-translation system, including both its nonphosphorylated and phosphorylated forms which were separated on the basis of a difference in mobility on SDS/PAGE. Experimental evidence is presented that the microheterogeneity is the result of nonenzymatic deamidations of labile amide containing amino acids. When expressed in E. coli at 28 °C, the percentage of the acidic forms of the enzyme subunit increased as a function of the induction time with IPTG, representing about 50% on 8 h induction. When the enzyme obtained after 2 h induction (containing mainly hPAH I) was incubated in vitro, its conversion to the acidic components (hPAH II,IV) revealed a pH and temperature dependence characteristic of a nonenzymatic deamidation of asparagine residues in proteins, with the release of ammonia. Comparing the microheterogeneity of the wild-type and a truncated form of the enzyme expressed in E. coli, it is concluded that the labile amide groups are located in the catalytic domain as defined by crystal structure analysis [Erlandsen, H., Fusetti, F., Martínez, A., Hough, E., Flatmark, T. & Stevens, R. C. (1997) Nat. Struct. Biol. 4, 995,1000]. It is further demonstrated that the progressive deamidations which occur in E. coli results in a threefold increase in the catalytic efficiency (Vmax/[S]0.5) of the enzyme and an increased susceptibility to limited tryptic proteolysis, characteristic of a partly activated enzyme. The results also suggest that deamidation may play a role in the long term regulation of the catalytic activity and the cellular turnover of this enzyme. [source]


Low proportion of whole exon deletions causing phenylketonuria in Denmark and Germany,,

HUMAN MUTATION, Issue 2 2007
Lisbeth Birk Møller
Abstract Phenylketonuria (PKU) is an autosomal recessive genetic disorder caused by mutations of the gene encoding phenylalanine hydroxylase (PAH). More than 500 different PAH mutations have been identified and about 90% of these are single base mutations. Although the identification rate of the PAH mutations is generally very high, some variants remain unidentified. A fraction of these mutations are the result of genomic deletions or duplications, which are not recognized with standard PCR-based methods. Here we present the results of exon deletion or duplication analysis in a total of 34 families, in which two mutations had not been identified using conventional diagnostic screening techniques. Using multiplex ligation-dependent probe amplification (MLPA), we found a deletion covering exon 1 and exon 2 (c.1-?_168+?del) in one patient, a deletion of exon 3 (c.169-?_352+?del) in four patients, and a deletion of exon 5 (c.442-?_509+?del) in two patients. A deletion was thus detected in about 20% (7/34) of the families tested. Out of a combined cohort of 570 independent PKU patients from Denmark and Germany, exon deletions were identified in a total of four patients. The estimated allelic frequency of exon deletions in PKU patients in these two populations is therefore below 0.5%. © 2007 Wiley-Liss, Inc. [source]


Gene expression profiling of aging in multiple mouse strains: identification of aging biomarkers and impact of dietary antioxidants

AGING CELL, Issue 4 2009
Sang-Kyu Park
Summary We used DNA microarrays to identify panels of transcriptional markers of aging that are differentially expressed in young (5 month) and old (25 month) mice of multiple inbred strains (129sv, BALB/c, CBA, DBA, B6, C3H and B6C3F1). In the heart, age-related changes of five genes were studied throughout the mouse lifespan: complement component 4, chemokine ligand 14, component of Sp100-rs, phenylalanine hydroxylase and src family associated phosphoprotein 2. A similar analysis in the brain (cerebellum) involved complement component 1q (alpha polypeptide), complement component 4, P lysozyme structural, glial fibrillary acidic protein and cathepsin S. Caloric restriction (CR) inhibited age-related expression of these genes in both tissues. Parametric analysis of gene set enrichment identified several biological processes that are induced with aging in multiple mouse strains. We also tested the ability of dietary antioxidants to oppose these transcriptional markers of aging. Lycopene, resveratrol, acetyl- l -carnitine and tempol were as effective as CR in the heart, and ,-lipoic acid and coenzyme Q10 were as effective as CR in the cerebellum. These findings suggest that transcriptional biomarkers of aging in mice can be used to estimate the efficacy of aging interventions on a tissue-specific basis. [source]


Synthesis of carbon-14 labeled [1- 14C]-, and [2- 14C]- L -tyrosine

JOURNAL OF LABELLED COMPOUNDS AND RADIOPHARMACEUTICALS, Issue 8 2001
W. Augustyniak
Abstract Two labeled isotopomers of L -tyrosine, L -Tyr, have been synthesized using specific properties of the enzymes phenylanine ammonia lyase, PAL, and L -phenylalanine hydroxylase. In an intermediate step [1- 14C]-, and [2- 14C]- L -phenylalanine, L -Phe, have been obtained from [1- 14C]-, and [2- 14C]cinnamic acid, prepared from potassium [14C]cyanate or [2- 14C]malonic acid, and by addition of ammonia in the presence of enzyme PAL. The labeled isotopomers of L -Phe have been converted into [1- 14C]-, and [2- 14C]- L -Tyr using the enzyme L -phenylalanine hydroxylase. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Ligand binding to the inhibitory and stimulatory GTP cyclohydrolase I/GTP cyclohydrolase I feedback regulatory protein complexes

PROTEIN SCIENCE, Issue 4 2001
Toshie Yoneyama
BH4, 6R - l - erythro -5,6,7,8-tetrahydrobiopterin; GFRP, GTP cyclohydrolase I feedback regulatory protein Abstract GTP cyclohydrolase I feedback regulatory protein (GFRP) mediates feedback inhibition of GTP cyclohydrolase I activity by 6R - l - erythro -5,6,7,8-tetrahydrobiopterin (BH4), which is an essential cofactor for key enzymes producing catecholamines, serotonin, and nitric oxide as well as phenylalanine hydroxylase. GFRP also mediates feed-forward stimulation of GTP cyclohydrolase I activity by phenylalanine at subsaturating GTP levels. These ligands, BH4 and phenylalanine, induce complex formation between one molecule of GTP cyclohydrolase I and two molecules of GFRP. Here, we report the analysis of ligand binding using the gel filtration method of Hummel and Dreyer. BH4 binds to the GTP cyclohydrolase I/GFRP complex with a Kd of 4 ,M, and phenylalanine binds to the protein complex with a Kd of 94 ,M. The binding of BH4 is enhanced by dGTP. The binding stoichiometrics of BH4 and phenylalanine were estimated to be 10 molecules of each per protein complex, in other words, one molecule per subunit of protein, because GTP cyclohydrolase I is a decamer and GFRP is a pentamer. These findings were corroborated by data from equilibrium dialysis experiments. Regarding ligand binding to free proteins, BH4 binds weakly to GTP cyclohydrolase I but not to GFRP, and phenylalanine binds weakly to GFRP but not to GTP cyclohydrolase I. These results suggest that the overall structure of the protein complex contributes to binding of BH4 and phenylalanine but also that each binding site of BH4 and phenylalanine may be primarily composed of residues of GTP cyclohydrolase I and GFRP, respectively. [source]


Purification, crystallization and crystallographic analysis of Dictyostelium discoideum phenylalanine hydroxylase in complex with dihydrobiopterin and FeIII

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 4 2010
Ningning Zhuang
Dictyostelium discoideum phenylalanine hydroxylase (DicPAH; residues 1,415) was expressed in Escherichia coli and purified for structural analysis. Apo DicPAH and DicPAH complexed with dihydrobiopterin (BH2) and FeIII were crystallized using 0.06,M PIPES pH 7.0, 26%(w/v) PEG 2000 by the hanging-drop vapour-diffusion method. Crystals of apo DicPAH and the DicPAH,BH2,FeIII complex diffracted to 2.6 and 2.07,Å resolution, respectively, and belonged to space group P21, with unit-cell parameters a = 70.02, b = 85.43, c = 74.86,Å, , = 110.12° and a = 70.97, b = 85.33, c = 74.89,Å, , = 110.23°, respectively. There were two molecules in the asymmetric unit. The structure of DicPAH has been solved by molecular replacement. [source]


Molecular and phenotypic characteristics of patients with phenylketonuria in Serbia and Montenegro

CLINICAL GENETICS, Issue 2 2006
M Stojiljkovic
Phenylketonuria (PKU) is the most common inborn error of amino acid metabolism in Caucasians. PKU is caused by mutations in the gene encoding phenylalanine hydroxylase (PAH) enzyme. Here, we report the spectrum and the frequency of mutations in the PAH gene and discuss genotype,phenotype correlation in 34 unrelated patients with PKU from Serbia and Montenegro. Using both polymerase chain reaction,restriction fragment length polymorphism and ,broad-range' denaturing-gradient gel electrophoresis/DNA sequencing analysis, 19 disease-causing mutations were identified, corresponding to mutation detection rate of 97%. The most frequent ones were L48S (21%), R408W (18%), P281L (9%), E390G (7%) and R261Q (6%), accounting for 60% of all mutant alleles. The genotype,phenotype correlation was studied in homozygous and functionally hemizygous patients. We found that the most frequent mutation, L48S, was exclusively associated with the classical (severe) PKU phenotype. The mutation E390G gave rise to mild PKU. For the mutation R261Q, patients had been recorded in two phenotype categories. Considering allele frequencies, PKU in Serbia and Montenegro is heterogeneous, reflecting numerous migrations over the Balkan Peninsula. [source]


Translating knowledge into practice in the "post-genome" era,

ACTA PAEDIATRICA, Issue 3 2004
CR Scriver
The Human Genome Project is "completed", but it is only a beginning in the understanding of genomic structure and function. A "human phenome project" is waiting in the wings. The complexity involving a phenotype can be glimpsed, for example, if one enquires into the relationships between mutant phenylalanine hydroxylase (PAH) genotypes and the clinical disorders called PKU /Hyperphenylalaninemia,so called lessons from PKU genotypes and phenotypes. Since genomes speak biochemistry, not phenotype (said RHA Plasterk), for genomics to penetrate medicine, biochemistry and biology must be allies. The ideal translators and ambassadors of the knowledge that must cross the gap between laboratory and bedside are the clinician scientists; restoration of that attenuated community of colleagues is a necessary step in the implementation of genomic medicine. [source]