Home About us Contact | |||
Phenotypic Integration (phenotypic + integration)
Selected AbstractsPhenotypic integration in plantsPLANT SPECIES BIOLOGY, Issue 2-3 2002COURTNEY J. MURREN First page of article [source] Correlated morphological and colour differences among females of the damselfly Ischnura elegansECOLOGICAL ENTOMOLOGY, Issue 3 2009JESSICA K. ABBOTT Abstract 1.,The female-limited colour polymorphic damselfly Ischnura elegans has proven to be an interesting study organism both as an example of female sexual polymorphism, and in the context of the evolution of colour polymorphism, as a model of speciation processes. 2.,Previous research suggests the existence of correlations between colour morph and other phenotypic traits, and the different female morphs in I. elegans may be pursuing alternative phenotypically integrated strategies. However, previous research on morphological differences in southern Swedish individuals of this species was only carried out on laboratory-raised offspring from a single population, leaving open the question of how widespread such differences are. 3.,The present study therefore analysed multi-generational data from 12 populations, investigating morphological differences between the female morphs in the field, differences in the pattern of phenotypic integration between morphs, and quantified selection on morphological traits. 4.,It was found that consistent morphological differences indeed existed between the morphs across populations, confirming that the previously observed differences were not simply a laboratory artefact. It was also found, somewhat surprisingly, that despite the existence of sexual dimorphism in body size and shape, patterns of phenotypic integration differed most between the morphs and not between the sexes. Finally, linear selection gradients showed that female morphology affected fecundity differently between the morphs. 5.,We discuss the relevance of these results to the male mimicry hypothesis and to the existence of potential ecological differences between the morphs. [source] Poor phenotypic integration of blue mussel inducible defenses in environments with multiple predatorsOIKOS, Issue 5 2009Aaren S. Freeman Aquatic prey encounter an array of threat cues from multiple predators and killed conspecifics, yet the vast majority of induced defenses are investigated using cues from single predator species. In most cases, it is unclear if odors from multiple predators will disrupt defenses observed in single-predator induction experiments. We experimentally compared the inducible defenses of the common marine mussel Mytilus edulis to waterborne odor from pairwise combinations of three predators representing two attack strategies. Predators included the sea star, Asterias vulgaris (=Asteriasrubens), and the crabs Carcinus maenas and Cancer irroratus. The mussels increased adductor muscle mass in response to cues from unfed Asterias (a predatory seastar that pulls mussel shells open) and increased shell thickness in response to unfed Carcinus, a predatory crab that crushes or peels shells. However, the mussels did not express either predator specific response when exposed to the combined cues of Asterias and Carcinus, and mussels did not increase shell thickness when exposed to cues from Cancer alone or any pairwise combination of the three predators. Shell closure or ,clamming up' did not occur in response to any predator combination. These results suggest that predator-specific responses to the Asterias and Carcinus are poorly integrated and cannot be expressed simultaneously. Simultaneous cues from multiple predators affect the integration of predator specific defenses and predator odors from functionally similar predators do not necessarily initiate similar defenses. Ultimately, the degree that prey can integrate potentially disparate defenses in a multiple predator environment may have ecological ramifications and represent a seldom explored facet of the evolution of inducible defenses. [source] Brief communication: Methods of sequence heterochrony for describing modular developmental changes in human evolutionAMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 2 2009Gregory E. Blomquist Abstract Interest in the developmental changes leading to apomorphic features of human anatomy is longstanding. Although most research has focused on quantitative measures of size and shape, additional information may be available in the sequence of events in development, including aspects of phenotypic integration. I apply two recently proposed techniques for analyzing developmental sequences to literature data on human and chimpanzee age of limb element ossification center appearance in radiographs. The event-pair cracking method of Jeffery et al. (Syst Biol 51 [2002] 478,491) offers little additional insight on sequence differences in this data set than a simpler difference of ranks. Both reveal shifts in timing that are likely related to locomotor differences between the two species. Poe's (Evolution 58 [2004] 1852,1855) test for modularity in a sequence identifies the ankle, wrist, and hind limb as developmental modules, which may correspond to localized combinations of developmental genes. Ossification patterns of the rays of the hand and foot show little modularity. Integrating these and other methods of sequence analysis with traditional metrics of size and shape remains an underdeveloped area of inquiry. Am J Phys Anthropol 2009. © 2008 Wiley-Liss, Inc. [source] |