Home About us Contact | |||
Phenolic Hydroxyl Group (phenolic + hydroxyl_group)
Selected AbstractsReactive Ketimino Radical Acceptors: Intermolecular Alkyl Radical Addition to Imines with a Phenolic Hydroxyl Group.CHEMINFORM, Issue 29 2006Hideto Miyabe Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract, please click on HTML or PDF. [source] Aqueous Medium Radical Addition to Ketimines with a Phenolic Hydroxyl Group.CHEMINFORM, Issue 17 2005Hideto Miyabe Abstract For Abstract see ChemInform Abstract in Full Text. [source] Comparison of Cyclodextrin-Dipeptide Inclusion Complexes in the Absence and Presence of Urea by Means of Capillary Electrophoresis, Nuclear Magnetic Resonance and Molecular ModelingEUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 18 2007Benjamin Waibel Abstract The use of capillary electrophoresis (CE) modified with cyclodextrin (CD) for the separation of stereoisomers of peptides is well established. To increase the solubility of ,-CD, urea is often added to the buffer which may influence the complexation of a CD with a guest molecule. The aim of the present study was to investigate the influence of urea on the complexation between dipeptides and ,-CD using Ala-Phe and Ala-Tyr as model compounds. For this purpose three different analytical methods were employed: capillary electrophoresis (CE), 1H-NMR spectroscopy and molecular dynamics simulations (MD). Electropherograms of the peptide enantiomers were different in the presence and absence of urea. For example, at pH,2.5 in the absence of urea the enantiomers of Ala-Tyr are not separated in contrast to the use of buffers containing urea. Applying "complexation-induced chemical shift (CICS)" in NMR spectroscopy and rotating frame Overhauser enhancement spectroscopy (ROESY) revealed differences in the complexation of the peptide enantiomers by ,-CD in the absence and presence of urea suggesting the stabilization of the complex through the phenolic hydroxyl group of tyrosine. MD simulations for different complexes were carried out with consideration of both water and urea molecules in solution. Simulations were performed for 1 ns. In conclusion, NMR spectroscopy and MD methods help to understand the structure of peptide-CD complexes and the separation and migration behavior in CE. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007) [source] New type of phenolic resin,The curing reaction of bisphenol A based benzoxazine with bisoxazoline and the properties of the cured resin.JOURNAL OF APPLIED POLYMER SCIENCE, Issue 2 2008Abstract The curing reaction of a bisphenol A based benzoxazine [2,2-bis(3,4-dihydro-3-phenyl-1,3-benzoxazine) propane (Ba)] and bisoxazoline with a latent curing agent and the properties of the cured resins were investigated. With a latent curing agent, the ring-opening reaction of the benzoxazine ring occurred more rapidly, and then the phenolic hydroxyl group generated by the ring-opening reaction of the benzoxazine ring also reacted with the oxazoline ring more rapidly. The cure time of molten resins from Ba and bisoxazoline with a latent curing agent was reduced, and the cure temperature was lowered, in comparison with those of resins from Ba and bisoxazoline without a latent curing agent. The melt viscosity of molten resins from Ba and bisoxazoline with a latent curing agent was kept around 50 Pa s at 80°C even after 30 min, and molten resins from Ba and bisoxazoline with a latent curing agent showed good thermal stability below 80°C. However, above 170°C, the curing reaction of Ba with bisoxazoline with a latent curing agent proceeded rapidly. Cured resins from Ba and bisoxazoline with a latent curing agent showed good heat resistance, flame resistance, mechanical properties, and electrical insulation in comparison with cured resins from Ba and bisoxazoline without a latent curing agent. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source] Comparative QSAR Studies on Toxicity of Phenol Derivatives Using Quantum Topological Molecular Similarity IndicesCHEMICAL BIOLOGY & DRUG DESIGN, Issue 5 2010Bahram Hemmateenejad Quantitative structure activity relationship (QSAR) analyses using a novel type of electronic descriptors called quantum topological molecular similarity (QTMS) indices were operated to describe and compare the mechanisms of toxicity of phenols toward five different strains (i.e., Tetrahymena pyriformis, L1210 Leukemia, Pseudomonas putida, Raja japonica and Cucumis sativus). The appropriate QSAR models for the toxicity data were obtained separately employing partial least squares (PLS) regression combined with genetic algorithms (GA), as a variable selection method. The resulting QSAR models were used to identify molecular fragments of phenol derivatives whose electronic properties contribute significantly to the observed toxicities. Using this information, it was feasible to discriminate between the mechanisms of action of phenol toxicity to the studied strains. It was found that toxicities of phenols to all strains, except with L1210 Leukemia, are significantly affected by electronic features of the phenolic hydroxyl group (C-O-H). Meanwhile, the resulting models can describe the inductive and resonance effects of substituents on various toxicities. [source] Study on Synthesis of Thebaine DerivativesCHINESE JOURNAL OF CHEMISTRY, Issue 12 2005He Liu Abstract The reaction of 7, -acetyl-6,14-endoethano-6,7,8,14-tetrahydrothebaine with 2-(thien-2-yl)ethylmagnesium bromide was investigated. The tertiary alcohol derivative 7, -[R-1-hydroxyl-1-methyl-3-(thien-2-yl)propyl])-6,14-endoethano-6,7,8,14-tetrahydrothebaine (3) and a by-product 4 were isolated. The structure of 4 was elucidated by X-ray analysis. The Grignard reaction shows high degree of stereoselectivity according with Cram rule. The crystal structure of 4 indicates that dihydrofuran ring was opened to form a phenolic hydroxyl group and a three-membered ring structure. It maintains the main rigid structure of morphine and contains a C(6)-C(14) enthano bridge. The 1-hydroxyl-1-methyl-3-(thien-2-yl)propyl group at C(7) position adopted S -configuration. [source] |