Home About us Contact | |||
Phenol Degradation (phenol + degradation)
Selected AbstractsModeling for batch phenol biodegradation with immobilized Alcaligenes faecalisAICHE JOURNAL, Issue 4 2006Xiaoqiang Jia Abstract Intrinsic cell growth and phenol biodegradation kinetics of Alcaligenes faecalis were studied in shaking flasks. Batch phenol biodegradation experiments were carried out in a 7.5 L fermentor with immobilized Alcaligenes faecalis in polyurethane foams. A double-layer reaction-diffusion model was developed to describe the dynamic behaviors of batch phenol biodegradation processes. Phenol degradation (within the cell-immobilized polyurethane foams as well as in the main liquid phase) and cell growth (within the cell-immobilized polyurethane foams only) at different initial phenol concentrations were simulated and analyzed in terms of both biodegradation time and layer radius course. The good agreement between the model simulations and the experimental measurements for phenol degradation in the main liquid phase validates the proposed double-layer reaction-diffusion model. © 2005 American Institute of Chemical Engineers AIChE J, 2006 [source] A New Generation of Catalytic Poly(vinylidene fluoride) Membranes: Coupling Plasma Treatment with Chemical Immobilization of Tungsten-Based Catalysts ,ADVANCED FUNCTIONAL MATERIALS, Issue 11 2006C. Lopez Abstract A new generation of catalytically active membranes for secondary amine oxidation and phenol degradation has been developed by coupling the advantages of low-temperature plasma-modification processes with surface chemical immobilization reactions of catalysts. Poly(vinylidene fluoride) membranes have been modified with NH3 radiofrequency glow discharges in order to graft amino groups at their surface, providing active sites for stable immobilization of tungsten-based heterogeneous catalysts. Particular attention has been focused on tungstate, WO42,, and decatungstate, W10O324,, which act efficiently as catalysts for the oxidation of secondary amines and as photocatalysts for the degradation of organic pollutants, respectively. Plasma-modified membranes surface-tailored with WO42, have been used in catalytic membrane reactors to activate hydrogen peroxide for oxidizing secondary amines to nitrones; membranes modified with W10O324, have been used for the complete degradation of phenol. The obtained results, in terms of amine,nitrone conversion and phenol degradation, respectively, appear extremely promising; these modified membranes can be considered as a pioneering, successful example of heterogenization of W-based catalysts on plasma-treated membranes. [source] Kinetic modeling of aqueous phenol degradation by UV/H2O2 processINTERNATIONAL JOURNAL OF CHEMICAL KINETICS, Issue 1 2008Maryam Edalatmanesh A dynamic kinetic model for the oxidation of phenol in water by an UV/H2O2 process is developed. The model is based on the elementary chemical and photochemical reactions, initiated by the photolysis of hydrogen peroxide into hydroxyl radicals. The model is validated by using experimental data obtained from the open literature for an actual UV/H2O2 process. Using those data and the developed kinetic model, kinetic rate constants for phenol intermediates, catechol and hydroquinone, are estimated. Moreover, the optimum initial hydrogen peroxide concentration is estimated by means of the validated model. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 40: 34,43, 2008 [source] Temperature dependency of granule characteristics and kinetic behavior in UASB reactorsJOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 8 2004Hsin-Hsien Chou Abstract When an inhibitory substrate, phenol, was treated under mesophilic conditions (25, 30, 35, and 40 °C), the upflow anaerobic sludge bed (UASB) reactors at 30 °C resulted in the greatest amount of biomass and the largest granule size, while the UASB reactors at 25 °C resulted in the smallest granule size and the greatest amount of wash-out of sludge. The granule size tended to be negatively correlated with the amount of wash-out of sludge. With an increase in temperature, the kinetic constant k for anaerobic phenol degradation increased and the half saturation constant (Ks) decreased. The mass fraction of methanogens (f) increased with increasing operational temperature in the UASB reactors and the activation energy (Ea) for acetate methanogenesis was larger than that for phenol acidogenesis in the batch reactors, indicating that the operational temperature imposes a more influential effect on methanogens than on acidogens. From the results of the activity of acidogens and methanogens (expressed in specific COD utilization rate), the rate-limiting step is phenol acidogenesis. Copyright © 2004 Society of Chemical Industry [source] Modeling for batch phenol biodegradation with immobilized Alcaligenes faecalisAICHE JOURNAL, Issue 4 2006Xiaoqiang Jia Abstract Intrinsic cell growth and phenol biodegradation kinetics of Alcaligenes faecalis were studied in shaking flasks. Batch phenol biodegradation experiments were carried out in a 7.5 L fermentor with immobilized Alcaligenes faecalis in polyurethane foams. A double-layer reaction-diffusion model was developed to describe the dynamic behaviors of batch phenol biodegradation processes. Phenol degradation (within the cell-immobilized polyurethane foams as well as in the main liquid phase) and cell growth (within the cell-immobilized polyurethane foams only) at different initial phenol concentrations were simulated and analyzed in terms of both biodegradation time and layer radius course. The good agreement between the model simulations and the experimental measurements for phenol degradation in the main liquid phase validates the proposed double-layer reaction-diffusion model. © 2005 American Institute of Chemical Engineers AIChE J, 2006 [source] Anaerobic mineralization of pentachlorophenol (PCP) by combining PCP-dechlorinating and phenol-degrading culturesBIOTECHNOLOGY & BIOENGINEERING, Issue 1 2009Suyin Yang Abstract The dechlorination and mineralization of pentachlorophenol (PCP) was investigated by simultaneously or sequentially combining two different anaerobic microbial populations, a PCP-dechlorinating culture capable of the reductive dechlorination of PCP to phenol and phenol- degrading cultures able to mineralize phenol under sulfate- or iron-reducing conditions. In the simultaneously combined mixture, PCP (about 35 µM) was mostly dechlorinated to phenol after incubation for 17 days under sulfate-reducing conditions or for 22 days under iron-reducing conditions. Thereafter, the complete removal of phenol occurred within 40 days under both conditions. In the sequentially combined mixture, most of the phenol, the end product of PCP dechlorination, was degraded within 12 days of inoculation with the phenol degrader, without a lag phase, under both sulfate- and iron-reducing conditions. In a radioactivity experiment, [14C,U],PCP was mineralized to 14CO2 and 14CH4 by the combined anaerobic microbial activities. Analysis of electron donor and acceptor utilization and of the production and consumption of H2, CO2, and CH4 suggested that the dechlorinating and degrading microorganisms compete with other microorganisms to perform PCP dechlorination and part of the phenol degradation in complex anoxic environments in the presence of electron donors and acceptors. The presence of a small amount of autoclaved soil slurry in the medium was possibly another advantageous factor in the successful dechlorination and mineralization of PCP by the combined mixtures. This anaerobic,anaerobic combination technology holds great promise as a cost-effective strategy for complete PCP bioremediation in situ. Biotechnol. Bioeng. 2009;102: 81,90. © 2008 Wiley Periodicals, Inc. [source] |