Home About us Contact | |||
Pharmacokinetic Properties (pharmacokinetic + property)
Selected AbstractsMigraine Headache Recurrence: Relationship to Clinical, Pharmacological, and Pharmacokinetic Properties of TriptansHEADACHE, Issue 4 2003Gilles Géraud MD Background and Objectives.,Triptan use is associated with headache recurrence, and this has been cited as an important reason for patient dissatisfaction with the treatment. The mechanism by which recurrence occurs is not clear, and the incidence of recurrence varies with the triptan used. In order to explore the pharmacological and physiological interaction of triptans and migraine headache recurrence further, some specific clinical, pharmacological, and pharmacokinetic factors that might influence migraine recurrence were evaluated in a review of the major efficacy data for the drugs in the triptan class. These factors were 5-HT1B and 5-HT1D receptor activities, the pharmacokinetic elimination half-life of each triptan, and the clinical efficacy of each compound, determined by the proportion of patients with headache relief and the therapeutic gain over placebo. Methods.,Clinical data were derived from 31 triptan, placebo-controlled, major efficacy studies used in a previous meta-analysis. The mean recurrence rate, mean headache response, and therapeutic gain were calculated using the results from the individual clinical studies. Mean headache response and therapeutic gain were calculated at the time point used to define recurrence in each study. Data for binding affinity and potency were taken from a direct-comparison in vitro pharmacology study, and the elimination half-life quoted in the data sheet for each triptan was used. Rank correlation with recurrence rate was performed for each of the test parameters. Results.,Mean headache recurrence rates ranged from 17% for frovatriptan 2.5 mg to 40% for rizatriptan. Elimination half-life and recurrence were inversely correlated (r = ,1.0, P = .0016). There was also a significant inverse correlation between 5-HT1B receptor potency and recurrence (r = ,0.68, P = .034), but 5-HT1D receptor potency was not correlated with recurrence (r = ,0.20, P = .54). In addition, the binding affinities for the 5-HT1B and 5-HT1D receptors were not correlated to headache recurrence. Importantly, it also was demonstrated that initial clinical efficacy was not correlated to headache recurrence. The correlation coefficient for headache response was 0.18 (P = .53) and for therapeutic gain, ,0.11 (P = .71). Conclusion.,The incidence of migraine headache recurrence varies between drugs in the triptan class. Migraine recurrence does not appear to be related to initial clinical efficacy, but is influenced by the pharmacological and pharmacokinetic properties of the individual triptans. The triptans with longer half-lives and greater 5-HT1B receptor potency had the lowest rates of headache recurrence. [source] ,-Methylation at Benzylic Fragment of N-Aryl-N,-benzyl Ureas Provides TRPV1 Antagonists with Better Pharmacokinetic Properties and Higher Efficacy in Inflammatory Pain Model.CHEMINFORM, Issue 44 2007Arthur Gomtsyan Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract, please click on HTML or PDF. [source] ChemInform Abstract: Synthesis and Evaluation of Pharmacological and Pharmacokinetic Properties of 11H-[1,2,4]Triazolo[4,5-c][2,3]benzodiazepin-3(2H)-ones.CHEMINFORM, Issue 13 2001Maria Zappala Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source] Current status of malaria chemotherapy and the role of pharmacology in antimalarial drug research and developmentFUNDAMENTAL & CLINICAL PHARMACOLOGY, Issue 4 2009Kesara Na-Bangchang Abstract Antimalarial drugs have played a mainstream role in controlling the spread of malaria through the treatment of patients infected with the plasmodial parasites and controlling its transmissibility. The inadequate armory of drugs in widespread use for the treatment of malaria, development of strains resistant to currently used antimalarials, and the lack of affordable new drugs are the limiting factors in the fight against malaria. In addition, other problems with some existing agents include unfavorable pharmacokinetic properties and adverse effects/toxicity. These factors underscore the continuing need of research for new classes of antimalarial agents, and a re-examination of the existing antimalarial drugs that may be effective against resistant strains. In recent years, major advances have been made in the pharmacology of several antimalarial drugs both in pharmacokinetics and pharmacodynamics aspects. These include the design, development, and optimization of appropriate dosage regimens of antimalarials, basic knowledge in metabolic pathways of key antimalarials, as well as the elucidation of mechanisms of action and resistance of antimalarials. Pharmacologists have been working in close collaboration with scientists in other disciplines of science/biomedical sciences for more understanding on the biology of the parasite, host, in order to exploit rational design of drugs. Multiple general approaches to the identification of new antimalarials are being pursued at this time. All should be implemented in parallel with focus on the rational development of new agents directed against newly identified parasite targets. With major advances in our understanding of malaria parasite biology coupled with the completion of the malaria genome, has presented exciting opportunities for target-based antimalarial drug discovery. [source] Clinical pharmacology and therapeutic use of antioxidant vitaminsFUNDAMENTAL & CLINICAL PHARMACOLOGY, Issue 2 2007Ramón Rodrigo Abstract The clinical use of antioxidants has gained considerable interest during the last decade. It was suggested from epidemiological studies that diets high in fruits and vegetables might help decrease the risk of cardiovascular disease. Therefore, supplements of vitamins C and E were applied through protocols aimed to prevent diseases such as atherosclerosis, preeclampsia or hypertension, thought to be mediated by oxidative stress. Despite the biological properties of these vitamins could account for an effective protection, as shown by several clinical and experimental studies, their efficacy remains controversial in the light of some recent clinical trials and meta-analyses. However, the methodology of these studies, criteria for selection of patients, the uncertain extent of progression of the disease when initiating supplementation, the lack of mechanistic studies containing basic scientific aspects, such as the bioavailability, pharmacokinetic properties, and the nature of the antioxidant sources of vitamins, could account for the inconsistency of the various clinical trials and meta-analyses assessing the efficacy of these vitamins to prevent human diseases. This review presents a survey of the clinical use of antioxidant vitamins E and C, proposing study models based on the biological effects of these compounds likely to counteract the pathophysiological mechanisms able to explain the structural and functional organ damage. [source] Biotransformation in vitro of the 22R and 22S epimers of budesonide by human liver, bronchus, colonic mucosa and skinFUNDAMENTAL & CLINICAL PHARMACOLOGY, Issue 1 2001Julio Cortijo The pharmacological effects of glucocorticoids are greatly influenced by their pharmacokinetic properties. In the present report, the in vitro biotransformation of the 22R and 22S epimers of the topical steroid budesonide was studied in the S-9 fraction of human liver, bronchus, skin and colonic mucosa. The disappearance of unchanged epimers of budesonide was measured during 90 min of incubation by high performance liquid chromatography. The rate of disappearance was high in human liver while little biotransformation occurred in bronchial tissue and colonic mucosa, and none was detected in the skin. A marked decay of the initial concentration of unchanged budesonide epimers was noticed after 2 h incubation in cultured human hepatocytes, while only a small decrease was observed after 24 h incubation in cultured human airway smooth muscle cells and BEAS-2B cells. The 22R epimer of budesonide suffered greater in vitro biotransformation than the 22S epimer in human hepatic, bronchial and colonic tissues. These findings extend those of other studies, and confirm that the high therapeutic ratio of budesonide is due to negligible local biotransformation combined with high level of liver metabolism for locally absorbed budesonide. [source] In vivo recovery of factor VIII and factor IX: intra- and interindividual variance in a clinical settingHAEMOPHILIA, Issue 1 2007S. BJÖRKMAN Summary., In vivo recovery (IVR) is traditionally used as a parameter to characterize the pharmacokinetic properties of coagulation factors. It has also been suggested that dosing of factor VIII (FVIII) and factor IX (FIX) can be adjusted according to the need of the individual patient, based on an individually determined IVR value. This approach, however, requires that the individual IVR value is more reliably representative for the patient than the mean value in the population, i.e. that there is less variance within than between the individuals. The aim of this investigation was to compare intra- and interindividual variance in IVR (as U dL,1 per U kg,1) for FVIII and plasma-derived FIX in a cohort of non-bleeding patients with haemophilia. The data were collected retrospectively from six clinical studies, yielding 297 IVR determinations in 50 patients with haemophilia A and 93 determinations in 13 patients with haemophilia B. For FVIII, the mean variance within patients exceeded the between-patient variance. Thus, an individually determined IVR value is apparently no more informative than an average, or population, value for the dosing of FVIII. There was no apparent relationship between IVR and age of the patient (1.5,67 years). For FIX, the mean variance within patients was lower than the between-patient variance, and there was a significant positive relationship between IVR and age (13,69 years). From these data, it seems probable that using an individual IVR confers little advantage in comparison to using an age-specific population mean value. Dose tailoring of coagulation factor treatment has been applied successfully after determination of the entire single-dose curve of FVIII:C or FIX:C in the patient and calculation of the relevant pharmacokinetic parameters. However, the findings presented here do not support the assumption that dosing of FVIII or FIX can be individualized on the basis of a clinically determined IVR value. [source] Migraine Headache Recurrence: Relationship to Clinical, Pharmacological, and Pharmacokinetic Properties of TriptansHEADACHE, Issue 4 2003Gilles Géraud MD Background and Objectives.,Triptan use is associated with headache recurrence, and this has been cited as an important reason for patient dissatisfaction with the treatment. The mechanism by which recurrence occurs is not clear, and the incidence of recurrence varies with the triptan used. In order to explore the pharmacological and physiological interaction of triptans and migraine headache recurrence further, some specific clinical, pharmacological, and pharmacokinetic factors that might influence migraine recurrence were evaluated in a review of the major efficacy data for the drugs in the triptan class. These factors were 5-HT1B and 5-HT1D receptor activities, the pharmacokinetic elimination half-life of each triptan, and the clinical efficacy of each compound, determined by the proportion of patients with headache relief and the therapeutic gain over placebo. Methods.,Clinical data were derived from 31 triptan, placebo-controlled, major efficacy studies used in a previous meta-analysis. The mean recurrence rate, mean headache response, and therapeutic gain were calculated using the results from the individual clinical studies. Mean headache response and therapeutic gain were calculated at the time point used to define recurrence in each study. Data for binding affinity and potency were taken from a direct-comparison in vitro pharmacology study, and the elimination half-life quoted in the data sheet for each triptan was used. Rank correlation with recurrence rate was performed for each of the test parameters. Results.,Mean headache recurrence rates ranged from 17% for frovatriptan 2.5 mg to 40% for rizatriptan. Elimination half-life and recurrence were inversely correlated (r = ,1.0, P = .0016). There was also a significant inverse correlation between 5-HT1B receptor potency and recurrence (r = ,0.68, P = .034), but 5-HT1D receptor potency was not correlated with recurrence (r = ,0.20, P = .54). In addition, the binding affinities for the 5-HT1B and 5-HT1D receptors were not correlated to headache recurrence. Importantly, it also was demonstrated that initial clinical efficacy was not correlated to headache recurrence. The correlation coefficient for headache response was 0.18 (P = .53) and for therapeutic gain, ,0.11 (P = .71). Conclusion.,The incidence of migraine headache recurrence varies between drugs in the triptan class. Migraine recurrence does not appear to be related to initial clinical efficacy, but is influenced by the pharmacological and pharmacokinetic properties of the individual triptans. The triptans with longer half-lives and greater 5-HT1B receptor potency had the lowest rates of headache recurrence. [source] Studies on the Synthesis of Di- and Trisaccharide Analogues of Moenomycin A. Modifications in Unit E and in the Lipid PartHELVETICA CHIMICA ACTA, Issue 7 2004Guangbin Yang Routes allowing the synthesis of moenomycin analogues with one modified sugar component and with new lipid parts were developed (see 10c, 12c, 16b, and 20b in Schemes,2,4). It is anticipated that such analogues will be useful for studying the mode of action of the moenomycin-type transglycosylase inhibitors in detail and for preparing analogues with improved pharmacokinetic properties. [source] Enantiomeric antidepressant drugs should be considered on individual meritHUMAN PSYCHOPHARMACOLOGY: CLINICAL AND EXPERIMENTAL, Issue S2 2001Pierre Baumann Abstract Many antidepressants have been introduced as racemic drugs, the enantiomers of which may differ in some of their pharmacodynamic and pharmacokinetic properties. This review argues that each enantiomer of a chiral antidepressant should be evaluated according to its individual characteristics rather than by extrapolation from the racemate, or by assumptions based on the stereoselective characteristics of other enantiomeric drugs. For example, in some cases the enantiomers' pharmacodynamic and therapeutic properties can be complementary, which suggests that the racemate should be used clinically. In other cases where enantiomers show qualitatively similar but quantitatively different properties to the racemate, using a single enantiomer might be more appropriate. In yet further cases, a distomer may induce the metabolism of the eutomer, enantiomers may be metabolised by different enzymes, there may be a different profile of drug,drug interactions, and therapeutic drug monitoring may be simpler. Therefore, this review exemplifies the principle that each enantiomer of a chiral antidepressant should be evaluated according to its individual pharmacological, pharmacokinetic and pharmacogenetic characteristics. These factors are discussed in relation to five chiral antidepressants: trimipramine, mianserin, mirtazapine, fluoxetine and citalopram. It is hoped that an appreciation of the stereoselective differences between enantiomers will facilitate improvements in the benefit:risk ratio of drugs used in the management of depression. Copyright © 2001 John Wiley & Sons, Ltd. [source] Engineering therapeutic monoclonal antibodiesIMMUNOLOGICAL REVIEWS, Issue 1 2008Xiao-yun Liu Summary: During last two decades, the chimerization and humanization of monoclonal antibodies (mAbs) have led to the approval of several for the treatment of cancer, autoimmune diseases, and transplant rejection. Additional approaches have been used to further improve their in vivo activity. These include combining them with other modalities such as chemotherapy and redesigning them for improved pharmacokinetics, effector function, and signaling activity. The latter has taken advantage of new insights emerging from an increased understanding of the cellular and molecular mechanisms that are involved in the interaction of immunoglobulin G with Fc receptors and complement as well as the negative signaling resulting from the hypercrosslinking of their target antigens. Hence, mAbs have been redesigned to include mutations in their Fc portions, thereby endowing them with enhanced or decreased effector functions and more desirable pharmacokinetic properties. Their valency has been increased to decrease their dissociation rate from cells and enhance their ability to induce apoptosis and cell cycle arrest. In this review we discuss these redesigned mAbs and current data concerning their evaluation both in vitro and in vivo. [source] Selective occlusion of tumor blood vessels by targeted delivery of an antibody-photosensitizer conjugateINTERNATIONAL JOURNAL OF CANCER, Issue 7 2006Monica Fabbrini Abstract The irregular vasculature and high interstitial pressure of solid tumors hinder the delivery of cytotoxic agents to cancer cells. As a consequence, the doses of chemotherapy necessary to achieve complete tumor eradication are associated with unacceptably high toxicities. The selective thrombosis of tumor blood vessels has been postulated as an alternative avenue for combating cancer, depriving tumors of nutrients and oxygen and causing an avalanche of tumor cell deaths. The human antibody L19, specific to the EDB domain of fibronectin, a marker of angiogenesis, is capable of selective in vivo localization around tumor blood vessels and is thus a suitable agent for delivering toxic payloads to the tumor neovasculature. Here we show that a chemical conjugate of the L19 antibody with the photosensitizer bis(triethanolamine)Sn(IV) chlorin e6, after intravenous injection and irradiation with red light, caused an arrest of tumor growth in mice with subcutaneous tumors. By contrast, a photosensitizer conjugate obtained with an antibody of identical pharmacokinetic properties but irrelevant specificity did not exhibit a significant therapeutic effect. These results confirm that vascular targeting strategies, aimed at the selective occlusion/disruption of tumor blood vessels, have a significant anticancer therapeutic potential and encourage the use of antibody-photosensitizer conjugates for the therapy of superficial tumors and possibly other angiogenesis-related pathologies. © 2005 Wiley-Liss, Inc. [source] Absorption, disposition and metabolism of di-isononyl phthalate (DINP) in F-344 ratsJOURNAL OF APPLIED TOXICOLOGY, Issue 5 2002R. H. McKee Abstract Di-isononyl phthalate (DINP; CAS no. 68515-48-0) is a general-purpose plasticizer for polyvinyl chloride. It produced liver and kidney effects when given to rodents at high oral doses, but there were no target organ effects in primates treated under similar conditions. To assist in understanding the basis for these species differences, the pharmacokinetic properties of DINP were evaluated in rodents following both oral and dermal administration. These studies demonstrated that the pharmacokinetic properties of DINP are similar to those of other high-molecular-weight phthalates. When orally administered to rodents, DINP is rapidly metabolized in the gastrointestinal tract to the corresponding monoester, absorbed and excreted, primarily in the urine. Shortly after administration, DINP is found primarily in liver and kidneys, but it does not persist or accumulate in any organ or tissue. It is very poorly absorbed from the skin, but once absorbed it behaves in the same way as the orally administered material. The results of these rodent studies contrast with data from studies involving humans or other primates, which indicate low absorption at low oral doses and much more limited total absorption at high doses. It appears that many, if not all, of the effects of DINP in rodent studies are associated with internal doses that would be difficult, if not impossible, to achieve in humans under any circumstances. Thus, the results of rodent studies may not be very useful in assessing the potential risks to humans from high-molecular-weight phthalates. Copyright © 2002 John Wiley & Sons, Ltd. [source] Controlled application and removal of liposomal therapeutics: Effective elimination of pegylated liposomal doxorubicin by double-filtration plasmapheresis in vitroJOURNAL OF CLINICAL APHERESIS, Issue 2 2010Gerhard Pütz Abstract Introduction: Nanoscale particle-based drug delivery systems like long circulating liposomal doxorubicin show unique pharmacokinetic properties and improved toxicity profiles. Liposomal doxorubicin accumulates in tumor tissue due to the enhanced permeation and retention effect, but only a small fraction of a total dose reaches the tumor site. Accumulation of liposomal doxorubicin is much faster in tumor sites than in certain organs where dose limiting adverse effects occur. Finding a way to detoxify the predominant part of a given dose, circulating in the blood after accumulation is completed, will presumably reduce severe side effects during chemotherapy. Methods: Elimination properties of therapeutic used pegylated liposomal doxorubicin (Doxil®/Caelyx®) and therapeutic used double-filtration plasmapheresis systems were evaluated in vitro and in reconstituted human blood. Results: Liposomes can be filtered by appropriate membranes without leakage of doxorubicin up to a pressure of 1 bar. At higher pressures, liposomes (,85 nm) may squeeze through much smaller pores without significant leakage of doxorubicin, whereas decreasing pore size to ,8 nm leads to increased leakage of doxorubicin. With therapeutic used apheresis systems, liposomal doxorubicin can be efficiently eliminated out of buffer medium and reconstituted human blood. No leakage of doxorubicin was detected, even when liposomes were circulating for 48 h in human plasma before apheresis. Conclusions: Convenient apheresis techniques are capable of a safe and efficient elimination of therapeutic used liposomal doxorubicin in an experimental model system. J. Clin. Apheresis, 2010. © 2010 Wiley-Liss, Inc. [source] Effects of chronic paroxetine treatment on dialysate serotonin in 5-HT1B receptor knockout miceJOURNAL OF NEUROCHEMISTRY, Issue 1 2003A. M. Gardier Abstract The role of serotonin (5-HT)1B receptors in the mechanism of action of selective serotonin re-uptake inhibitors (SSRI) was studied by using intracerebral in vivo microdialysis in conscious, freely moving wild-type and 5-HT1B receptor knockout (KO 5-HT1B) mice in order to compare the effects of chronic administration of paroxetine via osmotic minipumps (1 mg per kg per day for 14 days) on extracellular 5-HT levels ([5-HT]ext) in the medial prefrontal cortex and ventral hippocampus. Basal [5-HT]ext values in the medial prefrontal cortex and ventral hippocampus, ,,20 h after removing the minipump, were not altered by chronic paroxetine treatment in both genotypes. On day 15, in the ventral hippocampus, an acute paroxetine challenge (1 mg/kg i.p.) induced a larger increase in [5-HT]ext in saline-pretreated mutant than in wild-type mice. This difference between the two genotypes in the effect of the paroxetine challenge persisted following chronic paroxetine treatment. Conversely, in the medial prefrontal cortex, the paroxetine challenge increased [5-HT]ext similarly in saline-pretreated mice of both genotypes. Such a challenge produced a further increase in cortical [5-HT]ext compared with that in saline-pretreated groups of both genotypes, but no differences were found between genotypes following chronic treatment. To avoid the interaction with raphe 5-HT1A autoreceptors, 1 µm paroxetine was perfused locally through the dialysis probe implanted in the ventral hippocampus; similar increases in hippocampal [5-HT]ext were found in acutely or chronically treated wild-type mice. Systemic administration of the mixed 5-HT1B/1D receptor antagonist GR 127935 (4 mg/kg) in chronically treated wild-type mice potentiated the effect of a paroxetine challenge dose on [5-HT]ext in the ventral hippocampus, whereas systemic administration of the selective 5-HT1A receptor antagonist WAY 100635 did not. By using the zero net flux method of quantitative microdialysis in the medial prefrontal cortex and ventral hippocampus of wild-type and KO 5-HT1B mice, we found that basal [5-HT]ext and the extraction fraction of 5-HT were similar in the medial prefrontal cortex and ventral hippocampus of both genotypes, suggesting that no compensatory response to the constitutive deletion of the 5-HT1B receptor involving changes in 5-HT uptake capacity occurred in vivo. As steady-state brain concentrations of paroxetine at day 14 were similar in both genotypes, it is unlikely that differences in the effects of a paroxetine challenge on hippocampal [5-HT]ext are due to alterations of the drug's pharmacokinetic properties in mutants. These data suggest that there are differences between the ventral hippocampus and medial prefrontal cortex in activation of terminal 5-HT1B autoreceptors and their role in regulating dialysate 5-HT levels. These presynaptic receptors retain their capacity to limit 5-HT release mainly in the ventral hippocampus following chronic paroxetine treatment in mice. [source] Biowaiver monographs for immediate release solid oral dosage forms: Diclofenac sodium and diclofenac potassium,JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 4 2009B. Chuasuwan Abstract Literature data are reviewed regarding the scientific advisability of allowing a waiver of in vivo bioequivalence (BE) testing for the approval of immediate release (IR) solid oral dosage forms containing either diclofenac potassium and diclofenac sodium. Within the biopharmaceutics classification system (BCS), diclofenac potassium and diclofenac sodium are each BCS class II active pharmaceutical ingredients (APIs). However, a biowaiver can be recommended for IR drug products of each salt form, due to their therapeutic use, therapeutic index, pharmacokinetic properties, potential for excipient interactions, and performance in reported BE/bioavailability (BA) studies, provided: (a) test and comparator contain the same diclofenac salt; (b) the dosage form of the test and comparator is identical; (c) the test product contains only excipients present in diclofenac drug products approved in ICH or associated countries in the same dosage form, for instance as presented in this paper; (d) test drug product and comparator dissolve 85% in 30 min or less in 900 mL buffer pH 6.8, using the paddle apparatus at 75 rpm or the basket apparatus at 100 rpm; and (e) test product and comparator show dissolution profile similarity in pH 1.2, 4.5, and 6.8. © 2008 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:1206,1219, 2009 [source] Biowaiver monographs for immediate release solid oral dosage forms: AciclovirJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 12 2008J. Arnal Abstract Literature data relevant to the decision to allow a waiver of in vivo bioequivalence (BE) testing (biowaiver) for the approval of immediate release (IR) solid oral dosage forms containing aciclovir are reviewed. Aciclovir therapeutic use and therapeutic index, pharmacokinetic properties, data related to the possibility of excipient interactions and reported BE/bioavailability (BA) studies were also taken into consideration in order to ascertain whether a biowaiver can be recommended. According to the Biopharmaceutics Classification System (BCS) and considering tablet strengths up to 400 mg, aciclovir would be BCS Class III. However, in some countries also 800 mg tablets are available which fall just within BCS Class IV. Aciclovir seems not to be critical with respect to a risk for bioinequivalence, as no examples of bioinequivalence have been identified. It has a wide therapeutic index and is not used for critical indications. Hence, if: (a) the test product contains only excipients present in aciclovir solid oral IR drug products approved in ICH or associated countries, for instance as presented in this article; and (b) the comparator and the test product both are very rapidly dissolving, a biowaiver for IR aciclovir solid oral drug products is considered justified for all tablet strengths. © 2008 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 97:5061,5073, 2008 [source] Biowaiver monographs for immediate release solid oral dosage forms: Amitriptyline hydrochloride,JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 5 2006R.H. Manzo Abstract Literature data relevant to the decision to allow a waiver of in vivo bioequivalence (BE) testing for the approval of immediate release (IR) solid oral dosage forms containing amitriptyline hydrochloride are reviewed. Its therapeutic uses, its pharmacokinetic properties, the possibility of excipient interactions and reported BE/bioavailability (BA) problems are also taken into consideration. Literature data indicates that amitriptyline hydrochloride is a highly permeable active pharmaceutical ingredient (API). Data on the solubility according to the current Biopharmaceutics Classification System (BCS) were not fully available and consequently amitriptyline hydrochloride could not be definitively assigned to either BCS Class I or BCS Class II. But all evidence taken together, a biowaiver can currently be recommended provided that IR tablets are formulated with excipients used in existing approved products and that the dissolution meets the criteria defined in the Guidances. © 2006 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 95:966,973, 2006 [source] Biowaiver monographs for immediate release solid oral dosage forms: Ibuprofen,JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 10 2005H. Potthast Abstract Literature data are reviewed on the properties of ibuprofen related to the biopharmaceutics classification system (BCS). Ibuprofen was assessed to be a BCS class II drug. Differences in composition and/or manufacturing procedures were reported to have an effect on the rate, but not the extent of absorption; such differences are likely to be detectable by comparative in vitro dissolution tests. Also in view of its therapeutic use, its wide therapeutic index and uncomplicated pharmacokinetic properties, a biowaiver for immediate release (IR) ibuprofen solid oral drug products is scientifically justified, provided that the test product contains only those excipients reported in this paper in their usual amounts, the dosage form is rapidly dissolving (85% in 30 min or less) in buffer pH 6.8 and the test product also exhibits similar dissolution profiles to the reference product in buffer pH 1.2, 4.5, and 6.8. © 2005 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 94:2121-2131, 2005 [source] Biowaiver monographs for immediate release solid oral dosage forms: Ranitidine hydrochloride,JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 8 2005H. Kortejärvi Abstract Literature and experimental data relevant to the decision to allow a waiver of in vivo bioequivalence testing for the approval of immediate release (IR) solid oral dosage forms containing ranitidine hydrochloride are reviewed. According to the current Biopharmaceutics Classification System (BCS), ranitidine hydrochloride should be assigned to Class III. However, based on its therapeutic and therapeutic index, pharmacokinetic properties and data related to the possibility of excipient interactions, a biowaiver can be recommended for IR solid oral dosage forms that are rapidly dissolving and contain only those excipients as reported in this study. © 2005 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 94:1617,1625, 2005 [source] Glycoengineering: The effect of glycosylation on the properties of therapeutic proteinsJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 8 2005Angus M. Sinclair Abstract Therapeutic proteins have revolutionized the treatment of many diseases but low activity or rapid clearance limits their utility. New approaches have been taken to design drugs with enhanced in vivo activity and half-life to reduce injection frequency, increase convenience, and improve patient compliance. One recently used approach is glycoengineering, changing protein-associated carbohydrate to alter pharmacokinetic properties of proteins. This technology has been applied to erythropoietin and resulted in the discovery of darbepoetin alfa (DA), a hyperglycosylated analogue of erythropoietin that contains two additional N-linked carbohydrates, a threefold increase in serum half-life and increased in vivo activity compared to recombinant human erythropoietin (rHuEPO). The increased serum half-life allows for less frequent dosing to maintain target hemoglobin levels in anemic patients. Carbohydrates on DA and other molecules can also increase molecular stability, solubility, increase in vivo biological activity, and reduce immunogenicity. These properties are discussed. © 2005 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 94:1626,1635, 2005 [source] Improving pharmacokinetic properties of adrenocorticotropin by site-specific lipid modificationJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 9 2003Lei Wan Abstract Although many peptides are potentially good therapeutic agents for treating various diseases, only a few have been developed for limited applications. A major shortcoming is that peptides have generally very short serum half lives. In the present study, we use adrenocorticotropin (ACTH) as a model and explore the potential of combining site-specific amino acid substitution and lipid modification to increase the circulating half-lives of peptides. Phe39 of ACTH was substituted by Cys, which has a free sulfhydryl group that can react specifically with iodoacetamide derivatives of lipophilic groups. The biological activities of lipophilized ACTH(F39C)s were higher than native ACTH. Lipophilized ACTH(F39C)s bound more tightly to human serum albumin and cell membranes in vitro and had longer serum half-lives in vivo than native ACTH. These results indicate that the pharmacokinetic properties of peptides can be improved by site-specific substitution with cysteine residues and subsequent conjugation with lipophilic moieties. © 2003 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 92:1882,1892, 2003 [source] Neuropharmacological and pharmacokinetic properties of berberine: a review of recent researchJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 7 2009Minzhong Ye Abstract Objectives This review summarizes recent research on the neuropharmacological and pharmacokinetic properties of berberine, an isoquinoline alkaloid extracted from Coptidis rhizoma. Key findings Berberine has multiple neuropharmacological properties, such as neuroprection, anti-neuronal apoptosis, improvement of cerebral microcirculation and anti-Alzheimer's disease, and so on. The pharmacokinetic characteristics of berberine are that it is not easily absorbed and it is not stable in the gastrointestinal tract of animals or humans. Summary Further studies need to be carried out to develop berberine as a drug for nervous system diseases, such as brain ischaemia and Alzheimer's disease, that has favorable pharmacokinetic properties. [source] Phycocyanin liposomes for topical anti-inflammatory activity: in-vitro in-vivo studiesJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 4 2009Maria Manconia Abstract Objectives The aim of this work was to investigate the anti-inflammatory activity of C-phycocyanin (C-PC) on skin inflammation after topical administration and the influence of liposomal delivery on its pharmacokinetic properties. Methods Liposomes of different size and structure were prepared with different techniques using soy phosphatidylcholine and cholesterol. Vesicular dispersions were characterised by transmission electron microscopy, optical and fluorescence microscopy for vesicle formation and morphology, dynamic laser light scattering for size distribution, and Zetasizer for zeta-potential. C-PC skin penetration and permeation experiments were performed in vitro using vertical diffusion Franz cells and human skin treated with either free or liposomal drug dispersed in a Carbopol gel. Key findings The protein was mainly localised in the stratum corneum, while no permeation of C-PC through the whole skin thickness was detected. Two percent C-PC-encapsulating liposomes showed the best drug accumulation in the stratum corneum and the whole skin, higher than that of the corresponding free 2% C-PC gel. Moreover, skin deposition of liposomal C-PC was dose dependent since skin accumulation values increased as the C-PC concentration in liposomes increased. The topical anti-inflammatory activity of samples was evaluated in vivo as inhibition of croton oil-induced or arachidonic acid-induced ear oedema in rats. Conclusions The results showed that C-PC can be successfully used as an anti-inflammatory drug and that liposomal encapsulation is effective in improving its anti-inflammatory activity. [source] Ethanol-Induced Social Facilitation in Adolescent Rats: Role of Endogenous Activity at Mu Opioid ReceptorsALCOHOLISM, Issue 6 2009Elena I. Varlinskaya Background:, Ethanol consumption is considerably elevated during adolescence. Attractiveness of alcohol for humans during the adolescent developmental period is based, in part, on its ability to induce social facilitation,a facilitation of social interactions not only evident in human adolescents but also in adolescent rats. Endogenous opioid systems are among the multiple neural systems implicated in the behavioral and reinforcing effects of ethanol and may play a substantial role in modulating stimulatory effects of low doses of ethanol on social behavior during adolescence. This possibility was explored in the present study through the use of an animal model of peer-directed social behavior. Methods:, Sprague,Dawley rats were challenged early in adolescence with saline or ethanol intraperitoneally (i.p.), placed into an individual holding cage for 30 minutes, and then tested in a familiar situation with a nonmanipulated partner of the same age and sex. In Experiment 1, each test subject was injected subcutaneously with one of the three doses of a nonselective opioid antagonist naloxone (0, 0.05, and 0.1 mg/kg), 5 minutes prior to the social interaction test and 25 minutes following challenge with saline or ethanol (0.5 g/kg), whereas in Experiment 2 animals were challenged with one of the six doses of ethanol (0, 0.25, 0.5, 0.75, 1.0, and 1.25 g/kg) prior to injection of either saline or naloxone (0.05 mg/kg). In Experiment 3, animals were pretreated i.p. with the selective ,-opioid antagonist CTOP (0, 0.01, 0.025, 0.05, and 0.1 mg/kg) 30 minutes prior to challenge with saline or ethanol (0.5 g/kg). Results:, Low doses of ethanol (0.5 and 0.75 g/kg) produced social facilitation, as indexed by significant increases in play fighting and social investigation. Both doses of naloxone and the three highest doses of CTOP blocked the stimulatory effects of ethanol on play fighting but not on social investigation. These effects were not associated with alterations in ethanol pharmacokinetic properties or with shifts in the biphasic ethanol dose,response curve. Conclusions:, Ethanol-induced facilitation of social play behavior seen in adolescent animals is mediated in part through ethanol-induced release of endogenous ligands for the ,-opioid receptor or an ethanol-associated enhancement of sensitivity of these receptors for their endogenous ligands. [source] Review article: metoclopramide and tardive dyskinesiaALIMENTARY PHARMACOLOGY & THERAPEUTICS, Issue 1 2010A. S. RAO Summary Background, Metoclopramide is a dopamine receptor antagonist which has been used for treatment of a variety of gastrointestinal symptoms over the last thirty years. In 2009, the FDA issued a black box warning regarding long-term or high-dose use of this medication because of the risk of developing tardive dyskinesia. Aims, To review the mechanism of action and pharmacokinetic properties of metoclopramide, the risk of metoclopramide-induced tardive dyskinesia, potential mechanisms that may alter and to summarize the clinical context for appropriate use of the drug. Methods, We conducted a PubMed search using the following key words and combined searches: metoclopramide, neuroleptics, tardive dyskinesia, incidence, prevalence, dopamine, receptors, pharmacokinetic, pharmacology, pharmacogenetics, DRD3 Ser9Gly polymorphism, cytochrome P450, p-glycoprotein, risk factors, gastroparesis, outcome, natural history. Results, Available data show that risk of tardive dyskinesia from metoclopramide use is likely to be <1%, much less than the estimated 1,10% risk previously suggested in national guidelines. Tardive dyskinesia may represent an idiosyncratic response to metoclopramide; pharmacogenetics affect pharmacokinetic and dopamine receptor pharmacodynamics in response to neuroleptic agents that cause similar neurological complications. Conclusion, Community prevalence and pharmacogenetic mechanisms involved in metoclopramide-induced tardive dyskinesia require further study to define the benefit-risk ratio more clearly. [source] Pharmacokinetics of erythromycin after the administration of intravenous and various oral dosage forms to dogsJOURNAL OF VETERINARY PHARMACOLOGY & THERAPEUTICS, Issue 6 2008G. A. ALBARELLOS The purpose of this study was to describe and compare the pharmacokinetic properties of different formulations of erythromycin in dogs. Erythromycin was administered as lactobionate (10 mg/kg, IV), estolate tablets (25 mg/kg p.o.) and ethylsuccinate tablets or suspension (20 mg/kg p.o.). After intravenous (i.v.) administration, the principal pharmacokinetic parameters were (mean ± SD): AUC(0,,) 4.20 ± 1.66 ,g·h/mL; Cmax 6.64 ± 1.38 ,g/mL; Vz 4.80 ± 0.91 L/kg; Clt 2.64 ± 0.84 L/h·kg; t½, 1.35 ± 0.40 h and MRT 1.50 ± 0.47 h. After the administration of estolate tablets and ethylsuccinate suspension, the principal pharmacokinetic parameters were (mean ± SD): Cmax, 0.30 ± 0.17 and 0.17 ± 0.09 ,g/mL; tmax, 1.75 ± 0.76 and 0.69 ± 0.30 h; t½,, 2.92 ± 0.79 and 1.53 ± 1.28 h and MRT, 5.10 ± 1.12 and 2.56 ± 1.77 h, respectively. The administration of erythromycin ethylsuccinate tablets did not produce measurable serum concentrations. Only the i.v. administration rendered serum concentrations above MIC90 = 0.5 ,g/mL for 2 h. However, these results should be cautiously interpreted as tissue erythromycin concentrations have not been measured in this study and, it is recognized that they can reach much higher concentrations than in blood, correlating better with clinical efficacy. [source] Competitive AMPA receptor antagonistsMEDICINAL RESEARCH REVIEWS, Issue 2 2007Daniela Catarzi Abstract Glutamic acid (Glu) is the major excitatory neurotransmitter in the mammalian central nervous system (CNS) where it is involved in the physiological regulation of different processes. It has been well established that excessive endogenous Glu is associated with many acute and chronic neurodegenerative disorders such as cerebral ischaemia, epilepsy, amiotrophic lateral sclerosis, Parkinson's, and Alzheimer's disease. These data have consequently added great impetus to the research in this field. In fact, many Glu receptor antagonists acting at the N -methyl- D -aspartic acid (NMDA), 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA), and/or kainic acid (KA) receptors have been developed as research tools and potential therapeutic agents. Ligands showing competitive antagonistic action at the AMPA type of Glu receptors were first reported in 1988, and the systemically active 2,3-dihydroxy-6-nitro-7-sulphamoyl-benzo[f]quinoxaline (NBQX) was first shown to have useful therapeutic effects in animal models of neurological disease in 1990. Since then, the quinoxaline template has represented the backbone of various competitive AMPA receptor antagonists belonging to different classes which had been developed in order to increase potency, selectivity and water solubility, but also to prolong the "in vivo" action. Compounds that present better pharmacokinetic properties and less serious adverse effects with respect to the others previously developed are undergoing clinical evaluation. In the near future, the most important clinical application for the AMPA receptor antagonists will probably be as neuroprotectant in neurodegenerative diseases, such as epilepsy, for the treatment of patients not responding to current therapies. The present review reports the history of competitive AMPA receptor antagonists from 1988 up to today, providing a systematic coverage of both the open and patent literature. © 2006 Wiley Periodicals, Inc. [source] Tyrosine kinase inhibitors: From rational design to clinical trialsMEDICINAL RESEARCH REVIEWS, Issue 6 2001Peter Traxler Abstract Protein kinases play a crucial role in signal transduction as well as in cellular proliferation, differentiation, and various regulatory mechanisms. The inhibition of growth related kinases, especially tyrosine kinases, might provide new therapies for diseases such as cancer. The progress made in the crystallization of protein kinases has confirmed that the ATP-binding domain of tyrosine kinases is an attractive target for drug design. Three successful examples of drug design at Novartis using a tyrosine kinase as a molecular target are described. PKI166, a pyrrolo[2,3,- d]pyrimidine derivative, is a dual inhibitor of both the EGFR and the ErbB2 kinases. The compound entered clinical trials in 1999, based on its favorable preclinical profile: potent inhibition of EGF-mediated signalling in cells, in vivo antitumor activity in several EGFR overexpressing xenograft tumor models in nude mice, long-lasting inhibition of EGF-stimulated EGFR autophosphorylation in tumor tissue, good oral bioavailability in animals, and no prohibitive in vitro and in vivo toxicity findings. The anilino-phthalazine derivative PTK787/ZK222584 (Phase I, co-developed by Schering AG, Berlin) is a potent and selective inhibitor of both the KDR and Flt-1 kinases with interesting anti-angiogenic and pharmacokinetic properties (orally bioavailable). STI571 (GlivecÔ, GleevecÔ), a phenylamino-pyrimidine derivative, is a potent inhibitor of the Abl tyrosine kinase, which is present in 95% of patients with chronic myelogenous leukemia (CML). The compound specifically inhibits proliferation of v-Abl and Bcr-Abl expressing cells (including cells from CML patients) and shows anti-tumor activity as a single agent in animal models at well-tolerated doses. Pharmacologically relevant concentrations are achieved in the plasma of animals (oral administration). Promising data from phase I and II clinical trials in CML patients (98% haematological response rate in Phase I) support the fact that the STI571 represents a new treatment modality for CML. In addition, potent inhibition of the PDGFR and c-Kit tyrosine kinases also indicates its possible clinical use in solid tumors. © 2001 John Wiley & Sons, Inc. Med Res Rev, 21, No. 6, 499,512, 2001 [source] Clinically relevant drug interactions of current antifungal agentsMYCOSES, Issue 2 2010Paul O. Gubbins Summary Antifungal agents are often prescribed in critically ill patients who are receiving many other medications. When using systemic antifungals, clinicians may possess susceptibility data and they are typically aware of the potential toxicity of these agents. However, the myriad of potential drugs that antifungal agents can interact with is daunting and can be confusing. This article reviews the pharmacokinetic properties of antifungal agents and their clinically relevant drug interactions. The antifungal agents differ markedly in their pharmacokinetic properties and in how they interact with other medicines. The amphotericin B formulations interact with other medicines primarily by reducing their renal elimination or producing additive toxicities. The azoles interact with other medicines primarily by inhibiting biotransformation or by affecting drug distribution and elimination. The echinocandins have the lowest propensity to interact with other medicines. The clinical relevance of antifungal,drug interactions varies substantially. While certain interactions are benign and result in little or no untoward clinical outcomes, others can produce significant toxicity or compromise efficacy if not properly managed through monitoring and dosage adjustment. However, certain interactions produce significant toxicity or compromise efficacy to such an extent that they cannot be managed and the particular combination of antifungal and interacting medicine should be avoided. [source] |