Home About us Contact | |||
Pharmaceutical Tablets (pharmaceutical + tablet)
Selected AbstractsA Study of the Determination of Cu(II) by Anodic Stripping Voltammetry on a Novel Nylon/Carbon Fiber ElectrodeELECTROANALYSIS, Issue 7 2004A. Mylonakis Abstract In this work we report a new electrode material formed by injection-moulding of a conducting polymer consisting of carbon fibers in a Nylon matrix. This material is highly conductive, inexpensive, easy to mould in different shapes and requires minimal pretreatment. The electrode was tested as a mercury-free sensor for the trace determination of Cu(II) by anodic stripping voltammetry (ASV). The deposition and stripping behavior of copper on the conducting material was initially studied by cyclic voltammetry and the chemical and instrumental parameters of the determination were investigated. The electrode has been shown to be suitable for the determination of Cu(II) in the range 8,,g L,1 to 30,mg,L,1 (with deposition times ranging from 30,s to 10,min) with a relative standard deviation of 2.2% (at the 0.5,mg,L,1 level) and a limit of detection of 8,,g L,1 Cu(II) for 10,min of accumulation (at a S/N ratio of 5). The electrode was, finally, applied to the determination of copper in tap-water, pharmaceutical tablets and bovine serum with recoveries of 97.4, 94.9 and 93.4%, respectively [source] Combined use of chiral ionic liquid and cyclodextrin for MEKC: Part I. Simultaneous enantioseparation of anionic profensELECTROPHORESIS, Issue 16 2009Bin Wang Abstract The enantiomers of five profen drugs were simultaneously separated by MEKC with the combined use of 2,3,6-tri- O -methyl-,-cyclodextrin and chiral cationic ionic liquid, N -undecenoxy-carbonyl- L -leucinol bromide, which formed micelles in aqueous buffers. Enantioseparations of these profen drugs were optimized by varying the chain length and concentration of the IL surfactant using a standard recipe containing 35,mM 2,3,6-tri- O -methyl-,-cyclodextrin, 5,mM sodium acetate at pH 5.0. The batch-to-batch reproducibility of N -undecenoxy-carbonyl- L -leucinol bromide was tested and found to have no significant impact in terms of enantiomeric resolution, efficiency, and migration time. Finally, this method was successfully applied for the quantitative determination of ibuprofen in pharmaceutical tablets. [source] Imaging pharmaceutical tablets with optical coherence tomographyJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 1 2010Jakob M.A. Mauritz Abstract Optical coherence tomography (OCT) is a recently developed optical technique that produces depth profiles of three-dimensional objects. It is a nondestructive interferometric method responding to refractive index variation in the sample under study and can reach a penetration depth of a few millimetres. OCT employs near-infrared (NIR) light and therefore provides a link between NIR spectroscopy and Terahertz (THz) measurements that are often used to characterise tablets. In this article we assess the potential of OCT as a reliable and practical tool in the analysis of pharmaceutical tablets and coatings. A variety of tablets were tested with different shapes, formulations and coatings. We consider the origins of contrast in the obtained images and demonstrate that it correlates strongly with the expected tablet structure. The influence of absorption and scattering are considered for the wavelength ranges used. The results show that OCT is a promising diagnostic tool with an important role to play in the tablet and coating technologies. The high measurement speed of OCT and its relative ease of implementation make it also an attractive candidate technology for in-line quality control during manufacturing. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:385,391, 2010 [source] Assessment of diffuse transmission mode in near-infrared quantification,part I: The press effect on low-dose pharmaceutical tabletsJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 12 2009M. Saeed Abstract Quantitative applications for pharmaceutical solid dosage forms using near-infrared (NIR) spectroscopy are central to process analytical technology (PAT) manufacturing designs. A series of studies were conducted to evaluate the use of NIR transmission mode under various pharmaceutical settings. The spectral variability in relation to tablet physical parameters were investigated using placebo tablets with different thickness and porosity steps and both variables showed an exponential relationship with the detected transmittance signal drop. The drug content of 2.5% m/m folic acid tablets produced under extremely different compaction conditions was predicted and found to agree with UV assay results after inclusion of extreme physical outliers to the training sets. NIR transmission was also shown to traverse a wide section of the tablet by comparing relative blocking intensities from different regions of the tablet surface and >90% of the signal was detected through a central area of 7 mm diameters of the tablet surface. NIR Quantification of both film thickness and active ingredient for film-coated tablets are examined in part II of this study. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:4877,4886, 2009 [source] Analysis of low content drug tablets by transmission near infrared spectroscopy: Selection of calibration ranges according to multivariate detection and quantitation limits of PLS modelsJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 12 2008Manel Alcalą Abstract The content uniformity of low dose products is a major concern in the development of pharmaceutical formulations. Near infrared spectroscopy may be used to support the design and optimization of potent drug manufacturing processes through the analysis of blends and tablets in a relatively short time. A strategy for the selection of concentration ranges in the development of multivariate calibration is presented, evaluating the detection and quantitation limits of the obtained multivariate models. The strategy has been applied to the determination of an active principle in pharmaceutical tablets of low concentration (0,5%, w/w), using Fourier Transform Near Infrared (FT-NIR) transmission spectroscopy. The quantitation and detection limits decreased as the upper concentration level of the calibration models was reduced. The results obtained show that the selection of concentration ranges is a critical aspect during model design. The selection of wide concentration ranges with high levels is not recommended for the determination of analytes at minor levels (<1%, w/w), even when the concentration of interest is within the range of the model. © 2008 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 97:5318,5327, 2008 [source] Compaction of pharmaceutical tablets with different polymer matrices studied by FTIR imaging and X-ray microtomographyJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 10 2008Patrick Wray Abstract Water soluble polymers are often used in tablet compaction for their desirable compaction and dissolution properties. ATR-FTIR spectroscopic imaging has been used to analyze in situ the spatial distribution of different components in tablets with different compositions. Caffeine tablets made of three different polymer matrices, microcrystalline cellulose, hydroxypropyl methylcellulose (HPMC) and lactose, were investigated. It was found that the distribution of caffeine is strongly affected by the composition of polymer matrix used in the tablet. X-ray tomography was used to analyze the caffeine distribution as a complementary technique. The results obtained were compared to the ATR-FTIR spectroscopic images. © 2008 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 97:4269,4277, 2008 [source] Effect of moisture and pressure on tablet compaction studied with FTIR spectroscopic imagingJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 2 2007Noha Elkhider Abstract FTIR spectroscopic imaging using a diamond ATR accessory has been applied to examine the influence of moisture and compression pressure on the density and components distribution of compacted pharmaceutical tablets. The model drug and excipient used within this study are ibuprofen and hydroxypropylmethylcellulose (HPMC). Chemical images of these compacted tablets were captured in situ without removing the tablet between measurements. A powder mixture of both, drug and excipient, prior to compaction, were subjected to a controlled environment, using a controlled humidity cell. Histograms were plotted to assess the density distribution quantitatively. This FTIR spectroscopic imaging approach enabled both measurement of water sorption and enhanced visualization of the density distribution of the compacted tablets. ©2006 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 96:351,360, 2007 [source] |