Pharmaceutical Materials (pharmaceutical + material)

Distribution by Scientific Domains


Selected Abstracts


Crystallization Kinetics and X-ray Diffraction of Crystals Formed in Amorphous Lactose, Trehalose, and Lactose/Trehalose Mixtures

JOURNAL OF FOOD SCIENCE, Issue 5 2005
Song Miao
ABSTRACT: Effects of storage time and relative humidity on crystallization kinetics and crystal forms produced from freeze-dried amorphous lactose, trehalose, and a lactose/trehalose mixture were compared. Samples were exposed to 4 different relative water vapor pressure (RVP) (44.1%, 54.5%, 65.6%, 76.1%) environments at room temperature. Crystallization was observed from time-dependent loss of sorbed water and increasing intensities of peaks in X-ray diffraction patterns. The rate of crystallization increased with increasing storage humidity. Lactose crystallized as ,-lactose monohydrate, ,-anhydrous, and anhydrous forms of ,- and ,-lactose in molar ratios of 5:3 and 4:1 in lactose and lactose/trehalose systems. Trehalose seemed to crystallize as a mixture of trehalose dihydrate and anhydrate in trehalose and lactose/trehalose systems. The crystal forms in a mixture of lactose and trehalose did not seem to be affected by the component sugars, but crystallization of the component sugars was delayed. Time-dependent crystallization of lactose and trehalose in the lactose-trehalose mixture could be modeled using the Avrami equation. The results indicated that crystallization data are important in modeling of crystallization phenomena and predicting stability of lactose and trehalose-containing food and pharmaceutical materials. Keywords: crystallization, lactose, trehalose, crystal form, X-ray diffraction [source]


Synthesis and preliminary characterization of sulfamethazine-theophylline co-crystal

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 9 2010
Jie Lu
Abstract Co-crystals containing active pharmaceutical ingredients (APIs) represent a new type of pharmaceutical materials. In this work, sulfamethazine (STH) and theophylline (TP) were employed as the co-crystal formers. Neat cogrinding, solvent-drop cogrinding and slow evaporation were applied to synthesize the sulfamethazine,theophylline co-crystal (hereafter STH,TP co-crystal). The co-crystalline phase was characterized by DSC, TGA, Raman, PXRD, and dynamic vapor sorption (DVS) techniques. The STH,TP co-crystal structure was determined from single crystal X-ray diffraction data. The results show that, the STH,TP co-crystal, obtained in a 2:1 molar ratio of sulfamethazine and theophylline only by slow evaporation, possesses unique thermal, spectroscopic, and X-ray diffraction properties. Besides, in the STH,TP co-crystal, the sulfamethazine molecules form a dimer through the intermolecular hydrogen bonding (O ··· H N), and two intermolecular hydrogen bonds (O ··· H N and N ··· H N) keep the theophylline attached the dimer. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:4042,4047, 2010 [source]


Dielectric properties of pharmaceutical materials relevant to microwave processing: Effects of field frequency, material density, and moisture content

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 2 2010
Paul W.S. Heng
Abstract The rising popularity of microwaves for drying, material processing and quality sensing has fuelled the need for knowledge concerning dielectric properties of common pharmaceutical materials. This article represents one of the few reports on the density and moisture content dependence of the dielectric properties of primary pharmaceutical materials and their relevance to microwave-assisted processing. Dielectric constants and losses of 13 pharmaceutical materials were measured over a frequency range of 1,MHz,1,GHz at 23,±,1°C using a parallel-electrode measurement system. Effects of field frequency, material density and moisture content on dielectric properties were studied. Material dielectric properties varied considerably with frequency. At microwave frequencies, linear relationships were established between cube-root functions of the dielectric parameters ( and ) and density which enabled dielectric properties of materials at various densities to be estimated by regression. Moisture content was the main factor that contributed to the disparities in dielectric properties and heating capabilities of the materials in a laboratory microwave oven. The effectiveness of a single frequency density-independent dielectric function for moisture sensing applications was explored and found to be suitable within low ranges of moisture contents for a model material. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:941,957, 2010 [source]


Engineering of pharmaceutical materials: An industrial perspective

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 8 2008
Kwok Chow
Abstract Crystal engineering provides a rational approach to solving formulation, processing and product performance problems. This review discusses how the concept of crystal engineering can be judiciously utilized to manipulate the solid-state properties of drugs and excipients for successful pharmaceutical formulation and process development. Existing and emerging manufacturing as well as co-processing technologies being applied in the pharmaceutical industry are also presented together with selected examples of crystal form design, crystal form selection and crystal modifications for illustration purposes. © 2007 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 97: 2855,2877, 2008 [source]


Using terahertz pulsed spectroscopy to quantify pharmaceutical polymorphism and crystallinity

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 4 2005
Clare J. Strachan
Abstract Terahertz pulsed spectroscopy (TPS) is a new technique that is capable of eliciting rich information when investigating pharmaceutical materials. In solids, it probes long-range crystalline lattice vibrations and low energy torsion and hydrogen bonding vibrations. These properties make TPS potentially an ideal tool to investigate crystallinity and polymorphism. In this study four drugs with different solid-state properties were analyzed using TPS and levels of polymorphism and crystallinity were quantified. Carbamazepine and enalapril maleate polymorphs, amorphous, and crystalline indomethacin, and thermotropic liquid crystalline and crystalline fenoprofen calcium mixtures were quantified using partial least-squares analysis. Root-mean-squared errors of cross validation as low as 0.349% and limits of detection as low as approximately 1% were obtained, demonstrating that TPS is an analytical technique of potential in quantifying solid-state properties of pharmaceutical compounds. © 2005 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 94:837,846, 2005 [source]


Intrinsic adhesion force of lubricants to steel surface

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 9 2004
Jonghwi Lee
Abstract The intrinsic adhesion forces of lubricants and other pharmaceutical materials to a steel surface were quantitatively compared using Atomic Force Microscopy (AFM). A steel sphere was attached to the tip of an AFM cantilever, and its adhesion forces to the substrate surfaces of magnesium stearate, sodium stearyl fumarate, lactose, 4-acetamidophenol, and naproxen were measured. Surface roughness varied by an order of magnitude among the materials. However, the results clearly showed that the two lubricants had about half the intrinsic adhesion force as lactose, 4-acetamidophenol, and naproxen. Differences in the intrinsic adhesion forces of the two lubricants were insignificant. The lubricant molecules were unable to cover the steel surface during AFM measurements. Intrinsic adhesion force can slightly be modified by surface treatment and compaction, and its tip-to-tip variation was not greater than its difference between lubricants and other pharmaceutical particles. This study provides a quantitative fundamental basis for understanding adhesion related issues. © 2004 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 93:2310,2318, 2004 [source]