Petroleum System (petroleum + system)

Distribution by Scientific Domains


Selected Abstracts


OIL-PRONE LOWER CARBONIFEROUS COALS IN THE NORWEGIAN BARENTS SEA: IMPLICATIONS FOR A PALAEOZOIC PETROLEUM SYSTEM

JOURNAL OF PETROLEUM GEOLOGY, Issue 2 2010
J.H. Van Koeverden
In this study, we assess the oil generation potential of Lower Carboniferous, liptinite-rich coals in the Tettegras Formation on the Finnmark Platform, southern Norwegian Barents Sea. Oil from these coals has been expelled into intercalated sandstones. The coals may have contributed to petroleum recorded in well 7128/4,1 on the Finnmark Platform and may constitute a new Palaeozoic source rock in the Barents Sea. The Tettegras Formation coals contain up to 80 vol.% liptinite (mineral matter free base) and have low oxygen indices. Hydrogen indices up to 367 mg HC/g TOC indicate liquid hydrocarbon potential. In wells 7128/4,1 and 7128/6,1, the coals have vitrinite reflectance Ro= 0.75,0.85 %. Compared to shale and carbonate source rocks, expulsion from coal in general begins at higher maturities (Ro= 0.8,0.9% and Tmax= 444,453°C). Thus, the coals in the wells are mostly immature with regard to oil expulsion. The oil in well 7128/4,1 most likely originates from a more mature part of the Tettegras Formation in the deeper northern part of the Finnmark Platform. Wide variations in biomarker facies parameters and ,13C isotope values indicate a heterogeneous paralic depositional setting. The preferential retention by coal strata of naphthenes (e.g. terpanes and steranes) and aromatic compounds, compared to n-alkanes and acyclic isoprenoids, results in a terrigenous and waxy oil. This oil however contains marine biomarkers derived from the intercalated shales and siltstones. It is therefore important to consider the entire coal-bearing sequence, including the intercalated shales, in terms of source rock potential. Coals of similar age occur on Svalbard and Bjørnøya. The results of this study therefore suggest that a Lower Carboniferous coaly source rock may extend over large areas of the Norwegian Barents Sea. This source rock is mature in areas where the otherwise prolific Upper Jurassic marine shales are either immature or missing and may constitute a new Palaeozoic coal-sourced petroleum system in the Barents Sea. [source]


DEVONIAN CARBONATES OF THE NIGEL PEAK AREA, ROCKY MOUNTAINS, CANADA: A FOSSIL PETROLEUM SYSTEM?

JOURNAL OF PETROLEUM GEOLOGY, Issue 3 2008
J. Köster
In this study we report on Devonian (Frasnian , Famennian) limestones and dolostones exposed near Nigel Peak in the Main Ranges of the Canadian Rocky Mountains. These carbonates are a proximal facies of the Southesk-Cairn Carbonate Complex. The investigated strata are stratigraphically equivalent to the oil- and gas bearing Nisku Formation in the subsurface of the Western Canada Sedimentary Basin, about 300 km to the east. The rocks were investigated by polarisation and cathodoluminescence microscopy, total organic carbon analysis, Rock-Eval pyrolysis, solid bitumen reflectance measurements, gas chromatography and fluid inclusion analysis. Thin section analyses showed that silt-grade quartz and saddle dolomite increase upward from the base of the stratigraphic section, and that porosities are generally low. This is due to reduction of pore space due to early cementation and extensive dolomitization. Cathodoluminescence identified up to four generations of calcite cements. TOC values ranged from 0.2 to 2.4 %. Rock-Eval pyrolysis of carbonate samples resulted in measurable S1 peaks but not S2 peaks, indicating that there was no residual petroleum generation potential. Organic petrographic analyses identified dispersed kerogen and migrabitumen, and calculated vitrinite reflectance values were around 4 % on average which implies peak temperatures of 234,262 °C (due to deep burial) or 309,352 °C (due to short term hydrothermal heating). Fluid inclusion data indicates at least one pulse of hot fluids with elevated homogenization temperatures of > 300 °C, and this may explain the high thermal maturity of the studied rocks. [source]


IMPACT OF MAGMATISM ON PETROLEUM SYSTEMS IN THE SVERDRUP BASIN, CANADIAN ARCTIC ISLANDS, NUNAVUT: A NUMERICAL MODELLING STUDY

JOURNAL OF PETROLEUM GEOLOGY, Issue 3 2007
S.F. Jones
Numerical modelling is used to investigate for the first time the interactions between a petroleum system and sill intrusion in the NE Sverdrup Basin, Canadian Arctic Archipelago. Although hydrocarbonexploration has been successful in the western Sverdrup Basin, the results in the NE part of thebasin have been disappointing, despite the presence of suitable Mesozoic source rocks, migrationpaths and structural/stratigraphic traps, many involving evaporites. This was explained by (i) theformation of structural traps during basin inversion in the Eocene, after the main phase ofhydrocarbon generation, and/or (ii) the presence of evaporite diapirs locally modifying the geothermalgradient, leading to thermal overmaturity of hydrocarbons. This study is the first attempt at modellingthe intrusion of Cretaceous sills in the east-central Sverdrup Basin, and to investigate how theymay have affected the petroleum system. A one-dimensional numerical model, constructed using PetroMod9.0®, investigates the effectsof rifting and magmatic events on the thermal history and on petroleum generation at the DepotPoint L-24 well, eastern Axel Heiberg Island (79°23,40,N, 85°44,22,W). The thermal history isconstrained by vitrinite reflectance and fission-track data, and by the tectonic history. The simulationidentifies the time intervals during which hydrocarbons were generated, and illustrates the interplaybetween hydrocarbon production and igneous activity at the time of sill intrusion during the EarlyCretaceous. The comparison of the petroleum and magmatic systems in the context of previouslyproposed models of basin evolution and renewed tectonism was an essential step in the interpretationof the results from the Depot Point L-24 well. The model results show that an episode of minor renewed rifting and widespread sill intrusionin the Early Cretaceous occurred after hydrocarbon generation ceased at about 220 Ma in theHare Fiord and Van Hauen Formations. We conclude that the generation potential of these deeperformations in the eastern Sverdrup Basin was not likely to have been affected by the intrusion ofmafic sills during the Early Cretaceous. However, the model suggests that in shallower sourcerocks such as the Blaa Mountain Formation, rapid generation of natural gas occurred at 125 Ma, contemporaneous with tectonic rejuvenation and sill intrusion in the east-central Sverdrup Basin. A sensitivity study shows that the emplacement of sills increased the hydrocarbon generation ratesin the Blaa Mountain Formation, and facilitated the production of gas rather than oil. [source]


Petroleum System of the Sufyan Depression at the Eastern Margin of a Huge Strike-slip Fault Zone in Central Africa

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 6 2009
ZHANG Yamin
Abstract: The present paper mainly studies the petroleum system of the Sufyan Depression in the Muglad Basin of central Africa and analyzes its control of hydrocarbon accumulation. On the basis of comprehensive analysis of effective source rock, reservoir bed types and source,reservoir,seal assemblages, petroleum system theory has been used to classify the petroleum system of the Sufyan Depression. Vertically, the Sufyan Depression consists of two subsystems. One is an Abu Gabra subsystem as a self generating, accumulating and sealing assemblage. The other subsystem is composed of an Abu Gabra source rock, Bentiu channel sandstone reservoir and Darfur group shale seal, which is a prolific assemblage in this area. Laterally, the Sufyan Depression is divided into eastern and western parts with separate hydrocarbon generation centers more than 10 000 m deep. The potential of the petroleum system is tremendous. Recently, there has been a great breakthrough in exploration. The Sufyan C-1 well drilled in the central structural belt obtained high-yielding oil flow exceeding 100 tons per day and controlled geologic reserves of tens of millions of tons. The total resource potential of the Sufyan Depression is considerable. The central structural belt is most favorable as an exploration and development prospect. [source]


Petroleum systems of Chinese nonmarine basins

BASIN RESEARCH, Issue 1 2010
Wenzhi Zhao
The petroleum systems of Chinese nonmarine rifted and depression basins, dominated by lacustrine strata, have distinctive source rocks, reservoir types and trap characteristics. The rifted basins are characterized by numerous faults and multiple structural salients and sags (half grabens). Sags include many subdivisions and smaller isolated sags. Most sags constitute relatively independent petroleum systems that have efficiently generated and expelled hydrocarbons, have excellent reservoir properties in a variety of sand-body types, and have multiple traps. These attributes impart a petroliferous character to the entire sag. Depression basins (intracratonic flexural basins) developed on large cratons and hosted large lacustrine systems. They feature very gentle structure, large deltaic sand-bodies, source rocks in extensive contact with sand-bodies, heterogeneous low-porosity-low-permeability reservoirs and large, widespread lithology-controlled pools. In recent years, large oil and gas reserves have been discovered in these two types of lacustrine-dominated basins, contributing significantly to the growth of reserves in onshore China, and stratigraphic oil and gas pools have become the major type of accumulation in nonmarine lacustrine basins. [source]


OIL-PRONE LOWER CARBONIFEROUS COALS IN THE NORWEGIAN BARENTS SEA: IMPLICATIONS FOR A PALAEOZOIC PETROLEUM SYSTEM

JOURNAL OF PETROLEUM GEOLOGY, Issue 2 2010
J.H. Van Koeverden
In this study, we assess the oil generation potential of Lower Carboniferous, liptinite-rich coals in the Tettegras Formation on the Finnmark Platform, southern Norwegian Barents Sea. Oil from these coals has been expelled into intercalated sandstones. The coals may have contributed to petroleum recorded in well 7128/4,1 on the Finnmark Platform and may constitute a new Palaeozoic source rock in the Barents Sea. The Tettegras Formation coals contain up to 80 vol.% liptinite (mineral matter free base) and have low oxygen indices. Hydrogen indices up to 367 mg HC/g TOC indicate liquid hydrocarbon potential. In wells 7128/4,1 and 7128/6,1, the coals have vitrinite reflectance Ro= 0.75,0.85 %. Compared to shale and carbonate source rocks, expulsion from coal in general begins at higher maturities (Ro= 0.8,0.9% and Tmax= 444,453°C). Thus, the coals in the wells are mostly immature with regard to oil expulsion. The oil in well 7128/4,1 most likely originates from a more mature part of the Tettegras Formation in the deeper northern part of the Finnmark Platform. Wide variations in biomarker facies parameters and ,13C isotope values indicate a heterogeneous paralic depositional setting. The preferential retention by coal strata of naphthenes (e.g. terpanes and steranes) and aromatic compounds, compared to n-alkanes and acyclic isoprenoids, results in a terrigenous and waxy oil. This oil however contains marine biomarkers derived from the intercalated shales and siltstones. It is therefore important to consider the entire coal-bearing sequence, including the intercalated shales, in terms of source rock potential. Coals of similar age occur on Svalbard and Bjørnøya. The results of this study therefore suggest that a Lower Carboniferous coaly source rock may extend over large areas of the Norwegian Barents Sea. This source rock is mature in areas where the otherwise prolific Upper Jurassic marine shales are either immature or missing and may constitute a new Palaeozoic coal-sourced petroleum system in the Barents Sea. [source]


PETROLEUM PROSPECTIVITY OF CRETACEOUS FORMATIONS IN THE GONGOLA BASIN, UPPER BENUE TROUGH, NIGERIA: AN ORGANIC GEOCHEMICAL PERSPECTIVE ON A MIGRATED OIL CONTROVERSY

JOURNAL OF PETROLEUM GEOLOGY, Issue 4 2008
M. B. Abubakar
Organic geochemical studies of Cretaceous formations in the Gongola Basin, northern Nigeria, show TOC values that are generally higher than the minimum (0.5 wt %) required for hydrocarbon generation. Data from Rock-Eval pyrolysis and biomarker studies indicate the presence of both terrestrial and marine derived Types II and III organic matter, which is immature in the Gombe Formation and of marginal maturity in the Yolde Formation. Immature Type III to IV OM is present in the Pindiga Formation; and Type III OM, with a maturity that corresponds to the conventional onset (or perhaps peak) of oil generation occurs in the Bima Formation. However, Bima Formation samples from the 4710 , 4770 ft (1435.6 , 1453.9 m) depth interval within well Nasara-1 indicate Type I OM of perhaps lacustrine origin (H31R/H30 ratio generally ,0.25). Although the Nasara-1 well was reported to be dry, geochemical parameters (high TOCs, S1, S2 and Hls, low Tmax compared to adjacent samples, a bimodal S2 peak on the Rock-Eval pyrogram, a dominance of fluorinite macerals), together with generally low H3IR/H30 biomarker ratios within the 4710,4770 ft (1435.6,1453.9 m) interval, suggest the presence of migrated oil, perhaps sourced by lacustrine shales in the Albian Bima Formation located at as-yet unpenetrated depths. The presence of the migrated oil in the Bima Formation and its possible lacustrine origin suggest that the petroleum system in the Gongola Basin is similar to that of the Termit, Doba and Doseo Basins of the Chad Republic, where economic oil reserves have been encountered. [source]


IMPACT OF MAGMATISM ON PETROLEUM SYSTEMS IN THE SVERDRUP BASIN, CANADIAN ARCTIC ISLANDS, NUNAVUT: A NUMERICAL MODELLING STUDY

JOURNAL OF PETROLEUM GEOLOGY, Issue 3 2007
S.F. Jones
Numerical modelling is used to investigate for the first time the interactions between a petroleum system and sill intrusion in the NE Sverdrup Basin, Canadian Arctic Archipelago. Although hydrocarbonexploration has been successful in the western Sverdrup Basin, the results in the NE part of thebasin have been disappointing, despite the presence of suitable Mesozoic source rocks, migrationpaths and structural/stratigraphic traps, many involving evaporites. This was explained by (i) theformation of structural traps during basin inversion in the Eocene, after the main phase ofhydrocarbon generation, and/or (ii) the presence of evaporite diapirs locally modifying the geothermalgradient, leading to thermal overmaturity of hydrocarbons. This study is the first attempt at modellingthe intrusion of Cretaceous sills in the east-central Sverdrup Basin, and to investigate how theymay have affected the petroleum system. A one-dimensional numerical model, constructed using PetroMod9.0®, investigates the effectsof rifting and magmatic events on the thermal history and on petroleum generation at the DepotPoint L-24 well, eastern Axel Heiberg Island (79°23,40,N, 85°44,22,W). The thermal history isconstrained by vitrinite reflectance and fission-track data, and by the tectonic history. The simulationidentifies the time intervals during which hydrocarbons were generated, and illustrates the interplaybetween hydrocarbon production and igneous activity at the time of sill intrusion during the EarlyCretaceous. The comparison of the petroleum and magmatic systems in the context of previouslyproposed models of basin evolution and renewed tectonism was an essential step in the interpretationof the results from the Depot Point L-24 well. The model results show that an episode of minor renewed rifting and widespread sill intrusionin the Early Cretaceous occurred after hydrocarbon generation ceased at about 220 Ma in theHare Fiord and Van Hauen Formations. We conclude that the generation potential of these deeperformations in the eastern Sverdrup Basin was not likely to have been affected by the intrusion ofmafic sills during the Early Cretaceous. However, the model suggests that in shallower sourcerocks such as the Blaa Mountain Formation, rapid generation of natural gas occurred at 125 Ma, contemporaneous with tectonic rejuvenation and sill intrusion in the east-central Sverdrup Basin. A sensitivity study shows that the emplacement of sills increased the hydrocarbon generation ratesin the Blaa Mountain Formation, and facilitated the production of gas rather than oil. [source]


DISTRIBUTION OF SOURCE ROCKS AND MATURITY MODELLING IN THE NORTHERN CENOZOIC SONG HONG BASIN (GULF OF TONKIN), VIETNAM

JOURNAL OF PETROLEUM GEOLOGY, Issue 2 2005
C. Andersen
The northern offshore part of the Cenozoic Song Hong Basin in the Gulf of Tonkin (East Vietnam Sea) is at an early stage of exploration with only a few wells drilled. Oil to source rock correlation indicates that coals are responsible for the sub-commercial oil and gas accumulations in sandstones in two of the four wells which have been drilled on faulted anticlines and flower structures. The wells are located in a narrow, structurally inverted zone with a thick predominantly deltaic Miocene succession between the Song Chay and Vinh Ninh/Song Lo fault zones. These faults are splays belonging to the offshore extension of the Red River Fault Zone. Access to a database of 3,500 km of 2D seismic data has allowed a detailed and consistent break-down of the geological record of the northern part of the basin into chronostratigraphic events which were used as inputs to model the hydrocarbon generation history. In addition, seismic facies mapping, using the internal reflection characteristics of selected seismic sequences, has been applied to predict the lateral distribution of source rock intervals. The results based on Yükler ID basin modelling are presented as profiles and maturity maps. The robustness of the results are analysed by testing different heat flow scenarios and by transfer of the model concept to IES Petromod software to obtain a more acceptable temperature history reconstruction using the Easy%R0 algorithm. Miocene coals in the wells located in the inverted zone between the fault splays are present in separate intervals. Seismic facies analysis suggests that the upper interval is of limited areal extent. The lower interval, of more widespread occurrence, is presently in the oil and condensate generating zones in deep synclines between inversion ridges. The Yükler modelling indicates, however, that the coaly source rock interval entered the main window prior to formation of traps as a result of Late Miocene inversion. Lacustrine mudstones, similar to the highly oil-prone Oligocene mudstones and coals which are exposed in the Dong Ho area at the northern margin of the Song Hong Basin and on Bach Long Vi Island in Gulf of Tonkin, are interpreted to be preserved in a system of undrilled NW,SE Paleogene half-grabens NE of the Song Lo Fault Zone. This is based on the presence of intervals with distinct, continuous, high reflection seismic amplitudes. Considerable overlap exists between the shale-prone seismic facies and the modelled extent of the present-day oil and condensate generating zones, suggesting that active source kitchens also exist in this part of the basin. Recently reported oil in a well located onshore (BIO-STB-IX) at the margin of the basin, which is sourced mainly from "Dong Ho type" lacustrine mudstones supports the presence of an additional Paleogene sourced petroleum system. [source]


THE GEOLOGY AND HYDROCARBON HABITAT OF THE SARIR SANDSTONE, SE SIRT BASIN, LIBYA

JOURNAL OF PETROLEUM GEOLOGY, Issue 2 2000
G. Ambrose
The Jurassic , Lower Cretaceous Sarir Sandstone Cformerly known as the Nubian Sandstone) in the SE Sirt Basin is composed of four members which can be correlated regionally using a lithostratigraphic framework. These synrift sandstones unconformably overlie a little known pre-rift succession, and are in turn unconformably overlain by post-rift marine shales of Late Cretaceous age. Within the Sarir Sandstone are two sandstone-dominated members, each reflecting a rapid drop in base level, which are important oil reservoirs in the study area. Between these sandstones are thick shales of continental origin which define the architecture of the reservoir units. This four-fold lithostratigraphic subdivision of the Sarir Sandstone contrasts with previous schemes which generally only recognised three members. The sandstones below the top-Sarir unconformity host in excess of 20 billion barrels of oil in-place. The dominant traps are structural (e.g. Sarir C field), stratigraphic (e.g. Messla field), hanging-wall fault plays (e.g. UU1,65 field) and horst-block plays (e.g. Calanscio field). Three Sarir petroleum systems are recognised in the SE Sirt Basin. The most significant relies on post-rift (Upper Cretaceous) shales, which act as both source and seal. The Variegated Shale Member of the Sarir Sandstone may also provide source and seal; while a third, conceptual petroleum system requires generation of non-marine oils from pre-rift (?Triassic) source rocks in the axis of the Sarir Trough. The intrabasinal Messla High forms a relatively rigid block at the intersection of two rift trends, around which stress vectors were deflected during deposition of the syn-rift Sarir Sandstone. Adjacent troughs accommodated thick, post-rift shale successions which comprise excellent source rocks. Palaeogene subsidence facilitated oil generation, and the Messla High was a focus for oil migration. Wrenching on master faults with associated shale smear has facilitated fault seal and the retention of hydrocarbons. In the Calanscio area, transpressional faulting has resulted in structural inversion with oil entrapment in "pop-up" horst blocks. Elsewhere, transtensional faulting has resulted in numerous fault-dependent traps which, in combination with stratigraphic and truncation plays, will provide the focus for future exploration. [source]


Petroleum System of the Sufyan Depression at the Eastern Margin of a Huge Strike-slip Fault Zone in Central Africa

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 6 2009
ZHANG Yamin
Abstract: The present paper mainly studies the petroleum system of the Sufyan Depression in the Muglad Basin of central Africa and analyzes its control of hydrocarbon accumulation. On the basis of comprehensive analysis of effective source rock, reservoir bed types and source,reservoir,seal assemblages, petroleum system theory has been used to classify the petroleum system of the Sufyan Depression. Vertically, the Sufyan Depression consists of two subsystems. One is an Abu Gabra subsystem as a self generating, accumulating and sealing assemblage. The other subsystem is composed of an Abu Gabra source rock, Bentiu channel sandstone reservoir and Darfur group shale seal, which is a prolific assemblage in this area. Laterally, the Sufyan Depression is divided into eastern and western parts with separate hydrocarbon generation centers more than 10 000 m deep. The potential of the petroleum system is tremendous. Recently, there has been a great breakthrough in exploration. The Sufyan C-1 well drilled in the central structural belt obtained high-yielding oil flow exceeding 100 tons per day and controlled geologic reserves of tens of millions of tons. The total resource potential of the Sufyan Depression is considerable. The central structural belt is most favorable as an exploration and development prospect. [source]


THE GEOLOGY AND HYDROCARBON HABITAT OF THE SARIR SANDSTONE, SE SIRT BASIN, LIBYA

JOURNAL OF PETROLEUM GEOLOGY, Issue 2 2000
G. Ambrose
The Jurassic , Lower Cretaceous Sarir Sandstone Cformerly known as the Nubian Sandstone) in the SE Sirt Basin is composed of four members which can be correlated regionally using a lithostratigraphic framework. These synrift sandstones unconformably overlie a little known pre-rift succession, and are in turn unconformably overlain by post-rift marine shales of Late Cretaceous age. Within the Sarir Sandstone are two sandstone-dominated members, each reflecting a rapid drop in base level, which are important oil reservoirs in the study area. Between these sandstones are thick shales of continental origin which define the architecture of the reservoir units. This four-fold lithostratigraphic subdivision of the Sarir Sandstone contrasts with previous schemes which generally only recognised three members. The sandstones below the top-Sarir unconformity host in excess of 20 billion barrels of oil in-place. The dominant traps are structural (e.g. Sarir C field), stratigraphic (e.g. Messla field), hanging-wall fault plays (e.g. UU1,65 field) and horst-block plays (e.g. Calanscio field). Three Sarir petroleum systems are recognised in the SE Sirt Basin. The most significant relies on post-rift (Upper Cretaceous) shales, which act as both source and seal. The Variegated Shale Member of the Sarir Sandstone may also provide source and seal; while a third, conceptual petroleum system requires generation of non-marine oils from pre-rift (?Triassic) source rocks in the axis of the Sarir Trough. The intrabasinal Messla High forms a relatively rigid block at the intersection of two rift trends, around which stress vectors were deflected during deposition of the syn-rift Sarir Sandstone. Adjacent troughs accommodated thick, post-rift shale successions which comprise excellent source rocks. Palaeogene subsidence facilitated oil generation, and the Messla High was a focus for oil migration. Wrenching on master faults with associated shale smear has facilitated fault seal and the retention of hydrocarbons. In the Calanscio area, transpressional faulting has resulted in structural inversion with oil entrapment in "pop-up" horst blocks. Elsewhere, transtensional faulting has resulted in numerous fault-dependent traps which, in combination with stratigraphic and truncation plays, will provide the focus for future exploration. [source]


Petroleum systems of Chinese nonmarine basins

BASIN RESEARCH, Issue 1 2010
Wenzhi Zhao
The petroleum systems of Chinese nonmarine rifted and depression basins, dominated by lacustrine strata, have distinctive source rocks, reservoir types and trap characteristics. The rifted basins are characterized by numerous faults and multiple structural salients and sags (half grabens). Sags include many subdivisions and smaller isolated sags. Most sags constitute relatively independent petroleum systems that have efficiently generated and expelled hydrocarbons, have excellent reservoir properties in a variety of sand-body types, and have multiple traps. These attributes impart a petroliferous character to the entire sag. Depression basins (intracratonic flexural basins) developed on large cratons and hosted large lacustrine systems. They feature very gentle structure, large deltaic sand-bodies, source rocks in extensive contact with sand-bodies, heterogeneous low-porosity-low-permeability reservoirs and large, widespread lithology-controlled pools. In recent years, large oil and gas reserves have been discovered in these two types of lacustrine-dominated basins, contributing significantly to the growth of reserves in onshore China, and stratigraphic oil and gas pools have become the major type of accumulation in nonmarine lacustrine basins. [source]