Petrography

Distribution by Scientific Domains
Distribution within Earth and Environmental Science

Kinds of Petrography

  • thin-section petrography


  • Selected Abstracts


    PETROGRAPHY AND PROVENANCE INTERPRETATION OF THE STONE MOULDS FOR BRONZE DAGGERS FROM THE GALDONG PREHISTORIC SITE, REPUBLIC OF KOREA*

    ARCHAEOMETRY, Issue 1 2010
    C. H. LEE
    This paper presents material characteristics and raw material provenance of the stone moulds for bronze slender daggers from Galdong. This type of bronze dagger is uniquely distributed in the Korean Peninsula and these stone moulds were the first to be found by excavation. The stone moulds were made of igneous hornblendite with course-grained holocrystalline textures. Based on petrological, mineralogical and geochemical characteristics, the original rock materials of the moulds were inferred to be derived from the Jangsu or Namwon areas which are about 50 km away from the excavation site. It is a notable achievement that this provenance study confirmed the domestic production of Korean-styled daggers. [source]


    THE PETROGRAPHY AND CHEMISTRY OF THIN-WALLED WARE FROM AN HELLENISTIC, ROMAN SITE AT SEGESTA (SICILY),

    ARCHAEOMETRY, Issue 3 2003
    G. Montana
    Samples of Roman thin-walled ware from Segesta (northwestern Sicily), dating back to the early Imperial period, were studied by optical microscopy (OM) and Neutron Activation Analysis (NAA). Up to now, this class of Roman fine tableware has only occasionally been evaluated archaeometrically. Nevertheless, numerous production centres are believed to have been simultaneously active in the western Mediterranean area. Petrographic and chemical data seem to be in agreement with the archaeological hypothesis of local manufacture in Segesta for most of the analysed samples, through a comparison with kiln wasters and local raw materials. The effectiveness of thin-section petrography for determining the provenance of such a tiny tempered class of pottery and the integrated use of two different grouping procedures (petrography and chemistry) were also tested. [source]


    Petrography and provenance of Laecanius Amphorae from Istria, northern Adriatic region, Croatia

    GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, Issue 5 2006
    Maria A. Mange
    Amphorae sherds from the Laecanius workshop of Roman Istria (10,5 B.C. and 78 A.D.), Croatia, were studied by integrating archaeological and geological techniques including fabric analysis, thin-section petrography, X-ray diffractometry (XRD), and heavy mineral analysis. The fabric of the sherds showed distinctive characteristics, permitting their classification and allocation into nine fabric groupss. Petrography revealed that quartz is the dominant clastic component, whereas carbonate is common as temper; XRD provided information on firing temperatures that ranged between 750 and 900°C. The sherds contain diverse heavy mineral suites with generally high epidote and garnet proportions; zircon is occasionally important. Garnet/epidote ratios and the presence of diagnostic species (pyroxene, hornblende) showed systematic variations that coincided with similar variations in fabric characteristics. Heavy mineral signatures of amphorae produced in other workshops proved essential in differentiating them from Laecanius sherds. A comparative heavy mineral analysis of terra rossa samples from the vicinity of the workshop indicated that terra rossa was the major source for the paste. Differences observed in the heavy mineral composition of the sherds and terra rossa were interpreted by the spatial heterogeneity of the latter and the mixing of the paste with sandy temper. Fresh Adriatic sponge spicules in the majority of Laecanius sherds and the temper-derived, generally immature heavy mineral assemblages suggest that sandy deposits from the Adriatic were used for the clastic temper. © 2006 Wiley Periodicals, Inc. [source]


    Crystallization of Silicate Magmas Deciphered Using Crystal Size Distributions

    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 3 2007
    Bruce D. Marsh
    The remoteness and inhospitable nature of natural silicate magma make it exceedingly difficult to study in its natural setting deep beneath volcanoes. Although laboratory experiments involving molten rock are routinely performed, it is the style and nature of crystallization under natural conditions that is important to understand. This is where the crystal size distributions (CSD) method becomes fundamentally valuable. Just as chemical thermodynamics offers a quantitative macroscopic means of investigating chemical processes that occur at the atomic level, crystal size distribution theory quantitatively relates the overall observed spectrum of crystal sizes to both the kinetics of crystallization and the physical processes affecting the population of crystals themselves. Petrography, which is the qualitative study of rock textures, is the oldest, most comprehensively developed, and perhaps most beautiful aspect of studying magmatic rocks. It is the ultimate link to the kinetics of crystallization and the integrated space,time history of evolution of every magma. CSD analysis offers a quantitative inroad to unlocking and quantifying the observed textures of magmatic rocks. Perhaps the most stunning feature of crystal-rich magmatic rocks is that the constituent crystal populations show smooth and often quasi-linear log-normal distributions of negative slope when plotted as population density against crystal size. These patterns are decipherable using CSD theory, and this method has proven uniquely valuable in deciphering the kinetics of crystallization of magma. The CSD method has been largely developed in chemical engineering by Randolph and Larson,1,2 among many others, for use in understanding industrial crystallization processes, and its introduction to natural magmatic systems began in 1988. The CSD approach is particularly valuable in its ease of application to complex systems. It is an aid to classical kinetic theory by being, in its purest form, free of any atomistic assumptions regarding crystal nucleation and growth. Yet the CSD method provides kinetic information valuable to understanding the connection between crystal nucleation and growth and the overall cooling and dynamics of magma. It offers a means of investigating crystallization in dynamic systems, involving both physical and chemical processes, independent of an exact kinetic theory. The CSD method applied to rocks shows a systematic and detailed history of crystal nucleation and growth that forms the foundation of a comprehensive and general model of magma solidification. [source]


    Petrography, mineralogy, and trace element geochemistry of lunar meteorite Dhofar 1180

    METEORITICS & PLANETARY SCIENCE, Issue 9 2009
    Aicheng Zhang
    Dhofar 1180 is predominantly composed of fine-grained matrix with abundant mineral fragments and a few lithic and glassy clasts. Lithic clasts show a variety of textures including cataclastic, gabbroic, granulitic, ophitic/subophitic, and microporphyritic. Both feldspathic and mafic lithic clasts are present. Most feldspathic lithic clasts have a strong affinity to ferroan anorthositic suite rocks and one to magnesian suite rocks. Mafic lithic clasts are moderately to extremely Fe-rich. The Ti/[Ti+Cr]-Fe/[Fe+Mg] compositional trend of pyroxenes in mafic lithic clasts is consistent with that of low-Ti mare basalts. Glasses display a wide chemical variation from mafic to feldspathic. Some glasses are very similar to those from Apollo 16 soils. KREEP components are essentially absent in Dhofar 1180. One glassy clast is rich in K, REE and P, but its Mg/[Mg+Fe] is very low (0.25). It is probably a last-stage differentiation product of mare basalt. Molar Fe/Mn ratios of both olivine and pyroxene are essentially consistent with a lunar origin. Dhofar 1180 has a LREE-enriched (La 18 × CI, Sm 14 × CI) pattern with a small positive Eu anomaly (Eu 15 × CI). Th concentration is 0.7 ppm in Dhofar 1180. Petrography, mineralogy, and trace element geochemistry of Dhofar 1180 are different from those of other lunar meteorites, indicating that Dhofar 1180 represents a unique mingled lunar breccia derived from an area on the lunar nearside but far away from the center of the Imbrium Basin. [source]


    Petrography of refractory inclusions in CM2.6 QUE 97990 and the origin of melilite-free spinel inclusions in CM chondrites

    METEORITICS & PLANETARY SCIENCE, Issue 10 2007
    Alan E. Rubin
    It contains 1.8 vol% refractory inclusions; 40 were studied from a single thin section. Inclusion varieties include simple, banded and nodular structures as well as simple and complex distended objects. The inclusions range in mean size from 30 to 530 ,m and average 130 ± 90 ,m. Many inclusions contain 25 ± 15 vol% phyllosilicate (predominantly Mg-Fe serpentine); several contain small grains of perovskite. In addition to phyllosilicate, the most abundant inclusions in QUE 97990 consist mainly of spinel-pyroxene (35%), followed by spinel (20%), spinel-pyroxene-olivine (18%), pyroxene (12%), pyroxene-olivine (8%) and hibonite ± spinel (8%). Four pyroxene phases occur: diopside, Al-rich diopside (with , 8.0 wt% Al2O3), Al-Ti diopside (i.e., fassaite), and (in two inclusions) enstatite. No inclusions contain melilite. Aqueous alteration of refractory inclusions transforms some phases (particularly melilite) into phyllosilicate; some inclusions broke apart during alteration. Melilite-free, phyllosilicate-bearing, spinel inclusions probably formed from pristine, phyllosilicate-free inclusions containing both melilite and spinel. Sixty-five percent of the refractory inclusions in QUE 97990 appear to be largely intact; the major exception is the group of spinel inclusions, all of which are fragments. Whereas QUE 97990 contains about 50 largely intact refractory inclusions/cm2, estimates from literature data imply that more-altered CM chondrites have lower modal abundances (and lower number densities) of refractory inclusions: Mighei (CM , 2.3) contains roughly 0.3,0.6 vol% inclusions (,10 largely intact inclusions/cm2); Cold Bokkeveld (CM2.2) contains ,0.01 vol% inclusions (on the order of 6 largely intact inclusions/cm2). [source]


    Petrography, geochemistry, and alteration of country rocks from the Bosumtwi impact structure, Ghana

    METEORITICS & PLANETARY SCIENCE, Issue 4-5 2007
    Forson KARIKARI
    The country rocks, mainly meta-graywacke, shale, and phyllite of the Early Proterozoic Birimian Supergroup and some granites of similar age, are characterized by two generations of alteration. A pre-impact hydrothermal alteration, often along shear zones, is characterized by new growth of secondary minerals, such as chlorite, sericite, sulfides, and quartz, or replacement of some primary minerals, such as plagioclase and biotite, by secondary sericite and chlorite. A late, argillic alteration, mostly associated with the suevites, is characterized by alteration of the melt/glass clasts in the groundmass of suevites to phyllosilicates. Suevite, which occurs in restricted locations to the north and to the south-southwest of the crater rim, contains melt fragments, diaplectic quartz glass, ballen quartz, and clasts derived from the full variety of target rocks. No planar deformation features (PDFs) in quartz were found in the country rock samples, and only a few quartz grains in the suevite samples show PDFs, and in rare cases two sets of PDFs. Based on a total alkali element-silica (TAS) plot, the Bosumtwi granites have tonalitic to quartz-dioritic compositions. The Nb versus Y and Ta versus Yb discrimination plots show that these granites are of volcanic-arc tectonic provenance. Provenance studies of the metasedimentary rocks at the Bosumtwi crater have also indicated that the metasediments are volcanic-arc related. Compared to the average siderophile element contents of the upper continental crust, both country rocks and impact breccias of the Bosumtwi structure show elevated siderophile element contents. This, however, does not indicate the presence of an extraterrestrial component in Bosumtwi suevite, because the Birimian country rocks also have elevated siderophile element contents, which is thought to result from regional hydrothermal alteration that is also related to widespread sulfide and gold mineralization. [source]


    Target rocks, impact glasses, and melt rocks from the Lonar impact crater, India: Petrography and geochemistry

    METEORITICS & PLANETARY SCIENCE, Issue 9-10 2005
    Shiloh Osae
    A representative set of target basalts, including the basalt flows excavated by the crater, and a variety of impact breccias and impact glasses, were analyzed for their major and trace element compositions. Impact glasses and breccias were found inside and outside the crater rim in a variety of morphological forms and shapes. Comparable geochemical patterns of immobile elements (e.g., REEs) for glass, melt rock and basalt indicates minimal fractionation between the target rocks and the impactites. We found only little indication of post-impact hydrothermal alteration in terms of volatile trace element changes. No clear indication of an extraterrestrial component was found in any of our breccias and impact glasses, indicating either a low level of contamination, or a non-chondritic or otherwise iridium-poor impactor. [source]


    Geochemistry, Petrography and Spectroscopy of Organic Matter of Clay-Associated Kerogen of Ypresian Series: Gafsa-Metlaoui Phosphatic Basin, Tunisia

    RESOURCE GEOLOGY, Issue 4 2008
    Mongi Felhi
    Abstract This work presents geochemical characterization of isolated kerogen out of clay fraction using petrography studies, infrared absorption and solid state 13C nuclear magnetic resonance (NMR) spectroscopy, with N -alkane distributions of saturated hydrocarbon. Mineralogical study of clay mineral associations was carried out using X-ray diffraction (XRD), on Ypresian phosphatic series from Gafsa-Metlaoui basin, Tunisia. The XRD data indicate that smectite, palygorskite and sepiolite are the prevalent clay minerals in the selected samples. In this clay mineral association, the N -alkane (m/z = 57) distribution indicates that the marine organic matter is plankton and bacterial in origin. The kerogens observed on transmitted light microscopy, however, appear to be totally amorphous organic matter, without any appearance of biological form. The orange gel-like amorphous organic matter with distinct edges and homogenous texture is consistent with a high degree of aliphaticity. This material has relatively intense CH2 and CH3 infrared bands in 13C NMR peaks. This aliphatic character is related to bacterial origin. Brown amorphous organic matter with diffuse edges has a lower aliphatic character than the previous kerogen, deduced from relatively low CH2 and CH3 infrared and 13C NMR band intensities. [source]


    Lithostratigraphy, Sedimentology, and Provenance of the Balfour Formation (Beaufort Group) in the Fort Beaufort,Alice Area, Eastern Cape Province, South Africa

    ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 5 2009
    David KATEMAUNZANGA
    Abstract: The Balfour Formation has a pronounced lithological variation that is characterized by alternating sandstone- and mudstone-dominated members. The sandstone-dominated Oudeberg and Barberskrans Members are composed of lithofacies that range from intraformational conglomerates to fine-grained sediments, whereas the mudstone-dominated members (Daggaboersnek, Elandsberg, and Palingkloof) are dominated by the facies Fm and FI. Petrography, geochemistry, and a paleocurrent analysis indicated that the source rock of the Balfour Formation was to south east and the rocks had a transitional/dissected magmatic arc signature. The sandstones-rich members were deposited by seasonal and ephemeral high-energy, low-sinuous streams, and the fine-grained-rich members were formed by ephemeral meandering streams. The paleoclimates have been equated to present temperate climates; they were semiarid becoming arid towards the top of the Balfour Formation. This has been determined by reconstructing the paleolatitude of the Karoo Basin, geochemistry, paleontology, sedimentary structures, and other rock properties, like color. [source]


    Sequence stratigraphy of the upper Millstone Grit (Yeadonian, Namurian), North Wales

    GEOLOGICAL JOURNAL, Issue 5 2007
    Rhodri M. Jerrett
    Abstract The upper Millstone Grit strata (Yeadonian, Namurian) of North Wales have been studied using sedimentological facies analysis and sequence stratigraphy. These strata comprise two cyclothems, each containing prodelta shales (Holywell Shale) that pass gradationally upwards into delta-front and delta-plain deposits (Gwespyr Sandstone Formation). The deltas formed in shallow water (<100,m), were fluvial-dominated, had elongate and/or sheet geometries and are assigned to highstand systems tracts. Two delta complexes with distinctive sandstone petrographies are identified: (1) a southerly derived, quartzose delta complex sourced locally from the Wales-Brabant Massif, and (2) a feldspathic delta complex fed by a regional source(s) to the north and/or west. The feldspathic delta complex extended further south in the younger cyclothem. A multistorey braided-fluvial complex (Aqueduct Grit, c. 25,m thick) is assigned to a lowstand systems tract, and occupies an incised valley that was eroded into the highstand feldspathic delta complex in the younger cyclothem. A candidate incised valley cut into the highstand feldspathic delta complex in the older cyclothem is also tentatively identified. Transgressive systems tracts are thin (<5,m) and contain condensed fossiliferous shales (marine bands). The high-resolution sequence stratigraphic framework interpreted for North Wales can be readily traced northwards into the Central Province Basin (,Pennine Basin'), supporting the notion that high-frequency, high-magnitude sea-level changes were the dominant control on stratigraphic architecture. Copyright © 2007 John Wiley & Sons, Ltd. [source]


    Weathering and allophane neoformation in soils developed on volcanic ash in the Azores

    EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 2 2007
    M. Gérard
    Summary On Faial and Pico islands (Azores), we studied two profiles on basaltic pyroclasts that contain buried horizons, and we focussed on petrography, micropedology and mineralogy. Emphasis was given to weathering of the lapilli and ashes, and the neoformation of allophane. A combination of optical studies, in situ chemical analyses, X-ray diffraction and infrared spectroscopy of clay fractions revealed that allophane is present both in the micromass of the groundmass, in alteromorphs after lapilli or pumice, and in clay coatings. Whereas most studies describe allophane as a colloidal fraction formed by the congruent and total dissolution of the ashes, this study shows evidence for the formation of allophane alteromorphs, due to leaching of Si and cations, with preservation of the original shapes of the tephra. The allophane alteromorphs often display optical characteristics that resemble those of palagonite. Increasing alteration is observed through three steps: (i) hydration of the glass associated with strong cation and Si leaching, (ii) allophane hypocoatings, and (iii) allophane alteromorphs with development of intragrain bridges. The chemical signature of the alteromorphs varies from a pure alumino-silicate at one extreme to an Fe(Ti) enriched alumino-silicate at the other. Between those two extremes, the colour grades from yellow to dark orange, with microzonations. An Al-rich allophane composition is associated with gibbsite in the EUR6-Pico profile, whereas at the base of the EUR5-Faial profile, Si-rich allophane is associated with halloysite. Some variations of the palaeo-environment are also suggested by strong iron segregation observed with various secondary phases (ferrihydrite, haematite, iddingsite). [source]


    Bronze Age paleohydrography of the southern Venetian Plain

    GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, Issue 1 2010
    Silvia Piovan
    The Bronze Age paleohydrography of the distal Adige and Po alluvial plain (northeastern Italy) is notable for its relations with protohistoric human activities in this area. This paper regards the stratigraphy and petrography of the Saline,Cona alluvial ridge, upon which the Saline, Sarzano, and Cantarana Bronze Age sites lie, and the petrography of Fratta alluvial ridge, upon which the Frattesina complex (Bronze,Iron Age) lies. Sand analyses indicate the Po River as the source for sediments underlying the alluvial ridge that runs through Fratta Polesine, Rovigo, Sarzano, and Cona. Radiometric ages indicate that the branch of the Saline,Cona ridge was formed by the Po River between the second half of the 3rd millennium B.C. and the end of 2nd millennium B.C. This ridge represents the maximum northward expansion of the Po alluvial system, through the same area of coastal plain crossed by the Adige and Brenta paleochannels. This paleohydrographic setting implies that fluvial connections between the Central Po Plain settlements, the Venetian Plain and Alps were relatively less complex in the Early and Middle Bronze Age than in the Late Bronze Age, when the terminal reach of the Po River was separated by the Adige River by hundreds of km2 of swampy terrain. © 2009 Wiley Periodicals, Inc. [source]


    Speleothem preservation and diagenesis in South African hominin sites implications for paleoenvironments and geochronology

    GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, Issue 5 2009
    Philip J. Hopley
    Plio-Pleistocene speleothems from australopithecine-bearing caves of South Africa have the potential to yield paleoenvironmental and geochronological information using isotope geochemistry. Prior to such studies it is important to assess the preservation of geochemical signals within the calcitic and aragonitic speleothems, given the tendency of aragonitic speleothems to recrystallize to calcite. This study documents the geochemical suitability of speleothems from the principal hominin-bearing deposits of South Africa. We use petrography, together with stable isotope and trace element analysis, to identify the occurrence of primary aragonite, primary calcite, and secondary calcite. This study highlights the presence of diagenetic alteration at many of the sites, often observed as interbedded primary and secondary fabrics. Trace element and stable isotopic values distinguish primary calcite from secondary calcite and offer insights into geochemical aspects of the past cave environment. ,13C values of the primary and secondary calcites range from +6 to ,9, and ,18O values range from ,4 to ,6,. The data are thus typical of meteoric calcites with highly variable ,13C and relatively invariant ,18O. High carbon isotope values in these deposits are associated with the effects of recrystallization and rapid outgassing of CO2 during precipitation. Mg/Ca and Sr/Ca ratios differ between primary and secondary calcite speleothems, aiding their identification. Carbon and oxygen isotope values in primary calcite reflect the proportion of C3 and C4 vegetation in the local environment and the oxygen isotope composition of rainfall. Primary calcite speleothems preserve the pristine geochemical signals vital for ongoing paleoenvironmental and geochronological research. © 2009 Wiley Periodicals, Inc. [source]


    Combining visual and geochemical analyses to source chert on Southern Baffin Island, Arctic Canada

    GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, Issue 4 2009
    S. Brooke Milne
    A combined methodological approach using visual and geochemical methods is introduced and preliminary results of a study illustrating its effectiveness to determine chert source provenance are presented. This study focuses on lithic debitage and raw chert samples collected from the interior of southern Baffin Island, Arctic Canada. Chert is abundant throughout this region yet it occurs as small, scattered surface nodules that are highly variable in color. Prior to this study, little was known about the provenance of this local toolstone and whether it derived from local outcrops, glacial till sheets, or both. Given the pronounced variability exhibited by this chert, we use individual attribute analysis and petrography to impose some kind of analytical order upon an otherwise random aggregation of rocks. Thereafter, inductively coupled plasma mass spectrometry and secondary ion mass spectrometry are used to test the validity of these color categories to determine from how many geochemically distinct sources they derive. Using a standard that measures Al to a ratio of Ga/Zr, our results indicate that all of the raw chert samples derive from a single local source, while the debitage derives from four different sources, including the one that is local. We are confident that this combined methodological approach can be applied in other regions where chert variability is pronounced and source provenance is unknown. © 2009 Wiley Periodicals, Inc. [source]


    Pilot study experiments sourcing quartzite, Gunnison Basin, Colorado

    GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, Issue 6 2008
    Bonnie L. Pitblado
    This paper reports the results of pilot-study efforts to develop methods to profile quartzite, a rock type to which geochemical and other sourcing techniques have only rarely been applied. The long-term goal of the research is to fingerprint sources of quartzite in the Gunnison Basin, southwest Colorado, used by Paleoindian people ca. 11,500,8,000 years ago to make stone tools. Success would facilitate reconstruction of Paleoindian mobility in the Southern Rocky Mountains and potentially anywhere prehistoric people used quartzite. The goals of this paper are more modest: to demonstrate that a small-scale exploration of sourcing techniques suggests reason for optimism that quartzites may be amenable to source discrimination. For the same twenty Gunnison Basin quartzite samples, this study evaluated petrography, ultraviolet fluorescence (UVF), wavelength dispersive X-ray fluorescence (WD-XRF), instrumental neutron activation analysis (INAA), and inductively coupled plasma mass spectrometry,both acid-digestion (AD-ICP-MS) and laser ablation (LA-ICP-MS),as means to differentiate among the specimens and the sources they represent. Although more testing is needed to verify and refine our results, the study suggests there is potential for petrography, INAA, and both versions of ICP-MS to discriminate among quartzites from different source localities in the Gunnison Basin. The greatest potential for discriminating among different sources of quartzite in the Gunnison Basin may lie in a methodology combining petrographic analysis and LA-ICPMS. Future testing is required to evaluate this two-fold approach. © 2008 Wiley Periodicals, Inc. [source]


    Compositional analysis of Yayoi-Heian period ceramics from Okinawa: Examining the potential for provenance study

    GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, Issue 8 2006
    Scott M. Fitzpatrick
    In Okinawa, locally produced pottery dates back to the Initial Jomon period (,6500 14C yr B.P.). Later in time, especially during the Early Yayoi-Heian period (,300 B.C.,A.D. 300), ceramic assemblages appear to contain mainland (Japan) Yayoi pottery. A greater number of these sherds present in Okinawa over time coincide with an increasing amount of interaction with mainland Japan, as evidenced by other exchange items. In this preliminary study, the authors analyzed sherds from several Early Yayoi-Heian period deposits from sites in Okinawa using thin-section petrography and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The objective was to examine the applicability of these techniques for Okinawan ceramic provenance studies, assess intra- and intersite variation in mineralogical and chemical composition, and determine whether some sites exhibited a higher frequency of pottery from one locale versus another that might suggest the importation of pottery from mainland Japan. Results are equivocal, suggesting that the region's geological complexity may inhibit successful provenance study of ceramics using these and possibly other compositional techniques. © 2006 Wiley Periodicals, Inc. [source]


    Petrography and provenance of Laecanius Amphorae from Istria, northern Adriatic region, Croatia

    GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, Issue 5 2006
    Maria A. Mange
    Amphorae sherds from the Laecanius workshop of Roman Istria (10,5 B.C. and 78 A.D.), Croatia, were studied by integrating archaeological and geological techniques including fabric analysis, thin-section petrography, X-ray diffractometry (XRD), and heavy mineral analysis. The fabric of the sherds showed distinctive characteristics, permitting their classification and allocation into nine fabric groupss. Petrography revealed that quartz is the dominant clastic component, whereas carbonate is common as temper; XRD provided information on firing temperatures that ranged between 750 and 900°C. The sherds contain diverse heavy mineral suites with generally high epidote and garnet proportions; zircon is occasionally important. Garnet/epidote ratios and the presence of diagnostic species (pyroxene, hornblende) showed systematic variations that coincided with similar variations in fabric characteristics. Heavy mineral signatures of amphorae produced in other workshops proved essential in differentiating them from Laecanius sherds. A comparative heavy mineral analysis of terra rossa samples from the vicinity of the workshop indicated that terra rossa was the major source for the paste. Differences observed in the heavy mineral composition of the sherds and terra rossa were interpreted by the spatial heterogeneity of the latter and the mixing of the paste with sandy temper. Fresh Adriatic sponge spicules in the majority of Laecanius sherds and the temper-derived, generally immature heavy mineral assemblages suggest that sandy deposits from the Adriatic were used for the clastic temper. © 2006 Wiley Periodicals, Inc. [source]


    Geochemistry and petrography of basalt grindstones from the Karak Plateau, central Jordan

    GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, Issue 1 2004
    Brandon G. Watts
    Seventeen basalt grindstone fragments from central Jordan's Karak Plateau were studied. Most of these artifacts are vesicular or amygdaloidal with calcite as the dominant mineral filling the voids. The major minerals are olivine (with iddingsite rims), plagioclase, clinopyroxene, magnetite, and apatite. Glass is present in some samples. One basalt fragment is quite different in appearance and composition and may have come from flows closer to the Dead Sea. Grindstone fragment compositions plot in the tephrite-basanite and basalt fields. A plot of the concentrations of niobium, zirconium, and yttrium reveal that the sample compositions plot in the "within-plate alkali basalt" and "within-plate tholeiite" fields. The acquisition of basalts for preparing such implements appears to have been random. Some may have been introduced through trade and migration. Archaeological and environmental studies on the Karak Plateau are urgently needed because Jordan's population growth and economic development are destroying many sites and their environmental contexts. © 2004 Wiley Periodicals, Inc. [source]


    Transition from arc- to post-collision extensional setting revealed by K,Ar dating and petrology: an example from the granitoids of the Eastern Pontide Igneous Terrane, Arakl,-Trabzon, NE Turkey

    GEOLOGICAL JOURNAL, Issue 4 2005
    Sabah Yilmaz-
    Abstract The Eastern Pontide Igneous Terrane (EPIT) includes several Cretaceous to Neogene intrusive rocks, ranging in composition from low-K tholeiitic gabbros through calc-alkaline and high-K calc-alkaline metaluminous granitoids or peraluminous leucogranites to alkaline syenites. Such high diversity in age and composition is also accompanied by a broad spectrum in terms of geodynamics,i.e. from arc through syn-collisional thickening to post-collisional extensional regimes. Shallow-seated porphyritic acidic to intermediate rocks are from oldest to youngest, on the basis of field relations, the Gündo,du altered microgranite, the Bo,al, K-feldspar-megacrystic monzogranite and the Uzuntarla porphyritic granodiorite. These rocks, exposed in the southern part of the Arakl, region, east of Trabzon, Turkey, were studied in terms of their mineralogy and petrography, whole-rock geochemistry and hornblende K,Ar dating. The mineralogical and geochemical data reveal an apparent diversity in incompatible-element enrichment and depletion, for the Bo,al, unit and Uzuntarla unit, respectively. The Bo,al, and Uzuntarla units yield hornblende K,Ar ages ranging from 75.7,±,1.55 to 61.4,±,1.47,Ma and from 42.4,±,0.87 to 41.2,±,0.89,Ma, respectively. The diversity in both mineralogy,geochemistry and hornblende K,Ar ages suggests that the Bo,al, and Uzuntarla units are parts of the Cretaceous arc and Eocene post-collision extensional-related igneous activity, respectively, in the EPIT of northern Turkey. Copyright © 2005 John Wiley & Sons, Ltd. [source]


    Provenance of sandstones from the Wakino Subgroup of the Lower Cretaceous Kanmon Group, northern Kyushu, Japan

    ISLAND ARC, Issue 1 2000
    Daniel K. Asiedu
    Abstract The Wakino Subgroup is a lower stratigraphic unit of the Lower Cretaceous Kanmon Group. Previous studies on provenance of Wakino sediments have mainly concentrated on either petrography of major framework grains or bulk rock geochemistry of shales. This study addresses the provenance of the Wakino sandstones by integrating the petrographic, bulk rock geochemistry, and mineral chemistry approaches. The proportions of framework grains of the Wakino sandstones suggest derivation from either a single geologically heterogeneous source terrane or multiple source areas. Major source lithologies are granitic rocks and high-grade metamorphic rocks but notable amounts of detritus were also derived from felsic, intermediate and mafic volcanic rocks, older sedimentary rocks, and ophiolitic rocks. The heavy mineral assemblage include, in order of decreasing abundance: opaque minerals (ilmenite and magnetite with minor rutile), zircon, garnet, chromian spinel, aluminum silicate mineral (probably andalusite), rutile, epidote, tourmaline and pyroxene. Zircon morphology suggests its derivation from granitic rocks. Chemistry of chromian spinel indicates that the chromian spinel grains were derived from the ultramafic cumulate member of an ophiolite suite. Garnet and ilmenite chemistry suggests their derivation from metamorphic rocks of the epidote-amphibolite to upper amphibolite facies though other source rocks cannot be discounted entirely. Major and trace element data for the Wakino sediments suggest their derivation from igneous and/or metamorphic rocks of felsic composition. The major element compositions suggest that the type of tectonic environment was of an active continental margin. The trace element data indicate that the sediments were derived from crustal rocks with a minor contribution from mantle-derived rocks. The trace element data further suggest that recycled sedimentary rocks are not major contributors of detritus. It appears that the granitic and metamorphic rocks of the Precambrian Ryongnam Massif in South Korea were the major contributors of detritus to the Wakino basin. A minor but significant amount of detritus was derived from the basement rocks of the Akiyoshi and Sangun Terrane. The chromian spinel appears to have been derived from a missing terrane though the ultramafic rocks in the Ogcheon Belt cannot be discounted. [source]


    Metastable persistence of pelitic metamorphic assemblages at the root of a Cretaceous magmatic arc , Fiordland, New Zealand

    JOURNAL OF METAMORPHIC GEOLOGY, Issue 3 2009
    N. R. DACZKO
    Abstract Four aluminosilicate-bearing, amphibolite facies pelitic schists sampled from the root of the long-lived eastern Gondwana continental magmatic arc now exposed in southwest Fiordland, New Zealand, record remarkably different P,T,t histories. The four samples were collected from within 20 km of each other within the Fanny Bay Group and Deep Cove Gneiss near Dusky Sound. Integrated petrography, mineral chemistry, mineral equilibria modelling and in situ electron microprobe chemical dating of monazite shows that the sample of the Fanny Bay Group south of the Dusky Fault records a Carboniferous history with peak conditions of 4,4.5 kbar at 570,590 °C, while one sample of the Deep Cove Gneiss from Long Island records a Cretaceous history with apparent peak conditions of 7.5 kbar at 650 °C. Two other samples of the Deep Cove Gneiss from Resolution Island record mixed Carboniferous and Cretaceous histories with apparent peak conditions of 7 kbar at 650 °C and 3,7 kbar at 640,720 °C. The metapelitic schists on Resolution Island were intruded by arc magmas including the voluminous high- P Western Fiordland Orthogneiss, yet they lack mineralogical evidence of the Cretaceous high- P (>12 kbar) event. Analysis of water isopleths in a model system shows that the amount of water accommodated in the rock mineral assemblage increases with pressure. With the exhaustion of all free water, and without the addition of external water, these rocks persisted metastably within the deep arc during the high- P event. The emplacement of large volumes of diorite (i.e. the Western Fiordland Orthogneiss) into the root of the Early Cretaceous continental magmatic arc did not lead to regional granulite facies metamorphism of the country rock schists, as large volumes of amphibolite facies rock metamorphosed under medium- P conditions persisted metastably in the deep arc crust. [source]


    Phase Equilibrium in the Fluorapatite,Anorthite,Diopside System

    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 12 2000
    Dilshat Ubaydullayevich Tulyaganov
    The binary systems Ca5[PO4]3F,CaAl2Si2O8 and Ca5[PO4]3F,CaMgSi2O6 have been investigated, via annealing and quenching in the experimental method, direct observation of the melting behavior of the samples, X-ray diffraction analysis, petrography, and transmission electron microscopy. Phase equilibrium in the ternary system Ca5[PO4]3F,CaAl2Si2O8,CaMgSi2O6 was determined by combining information from the structure of the binary boundary systems and additional experimental data that were obtained from ternary compositions. The glass-formation region of the fluorapatite,anorthite,diopside system was studied, and the glass compositions for the development of glass-ceramics for technical and medical applications were identified. [source]


    Petrology of the Miller Range 03346 nakhlite in comparison with the Yamato-000593 nakhlite

    METEORITICS & PLANETARY SCIENCE, Issue 2 2007
    N. IMAE
    The main-phase modal abundances are 67.7 vol% augite, 0.8 vol% olivine, and 31.5 vol% mesostasis. Among all known nakhlites, MIL 03346's modal abundance of olivine is the smallest and of mesostasis is the largest. Augite occurs as cumulus phenocrysts having a homogeneous core composition (En36,38Fs24,22Wo40), which is identical with other nakhlites. They accompany thin ferroan rims divided into inner and outer rims with a compositional gap at the boundary between the two rims. Olivine grains have magnesian cores (Fa , 55) and show normal zoning toward ferroan rims (Fa , 84). Mesostasis consists mostly of glass (26.0 vol%) with minor skeletal fayalites, skeletal titanomagnetites, acicular phosphate, massive cristobalite, and sulfides. We conclude that MIL 03346 is the most rapidly cooled nakhlite among all known nakhlites based on the petrography. We obtain the intercumulus melt composition for MIL 03346 from the mass balance calculation using the modal abundances and discuss the crystallization sequence of MIL 03346 in comparison with that of Yamato (Y-) 000593. Although magnesian olivines of Y-000593 are phenocrystic, magnesian olivine grains of MIL 03346 seem to have texturally crystallized from the intercumulus melt. After the MIL 03346 magma intruded upward to the Martian surficial zone, the magnesian olivine crystallized, and then the ferroan inner rim formed on phenocrystic core augite. The outer rim of phenocrystic augites formed after the crystallization of skeletal fayalites and skeletal titanomagnetites, resulting in a compositional gap between the inner and outer rims. Finally, glassy mesostasis formed from the residual melt. This crystallization sequence of MIL 03346 is different from those of other nakhlites, including Y-000593. [source]


    A study of Mg and K isotopes in Allende CAIs: Implications to the time scale for the multiple heating processes

    METEORITICS & PLANETARY SCIENCE, Issue 12 2006
    Motoo Ito
    The 7R-19,1 contains 16O-rich and 16O-poor melilite grains and define a single isochron corresponding to an initial 26Al/27Al ratio of (6.6 ± 1.3) × 10,5. The Al-Mg isochron, O isotope measurements and petrography of melilite in 7R-19,1 indicate that 16O-poor melilite crystallized within 0.4 Myr after crystallization of 16O-rich melilite, suggesting that oxygen isotopic composition of the CAI-forming region changed from 16O-rich to 16O-poor within this time interval. The 16O-poor melilite is highly depleted in K compared to the adjacent 16O-rich melilite, indicating evaporation during remelting of 7R-19,1. We determined the isochron for 41Ca- 41K isotopic systematics in EGG3 pyroxene with (4.1 ± 2.0) × 10,9 (2s,) as an initial ratio of 41Ca/40Ca, which is at least two times smaller than the previous result (Sahijipal et al. 2000). The ratio of 41Ca/40Ca in the EGG3 pyroxene grain agrees within error with the value obtained by Hutcheon et al. (1984). No evidence for the presence of 41K excess (decay product of a short-lived radionuclide 41Ca) was found in 7R-19,1 and HN3,1. We infer that the CAI had at least an order of magnitude lower than canonical 41Ca/40Ca ratio at the time of the CAI formation. [source]


    A petrological, mineralogical, and chemical analysis of the lunar mare basalt meteorite LaPaz Icefield 02205, 02224, and 02226

    METEORITICS & PLANETARY SCIENCE, Issue 7 2006
    Katherine H. Joy
    They consist mainly of zoned pyroxene and plagioclase grains, with minor ilmenite, spinel, and mesostasis regions. Large, possibly xenocrystic, forsteritic olivine grains (<3% by mode) contain small trapped multiphase melt inclusions. Accessory mineral and mesostasis composition shows that the samples have experienced residual melt crystallization with silica oversaturation and late-stage liquid immiscibility. Our section of LAP 02224 has a vesicular fusion crust, implying that it was at one time located sufficiently close to the lunar surface environment to have accumulated solar-wind-implanted gases. The stones have a comparable major element composition and petrography to low-Ti, low-Al basalts collected at the Apollos 12 and 15 landing sites. However, the LAP stones also have an enriched REE bulk composition and are more ferroan (Mg numbers in the range of 31 to 35) than similar Apollo samples, suggesting that they represent members of a previously unsampled fractionated mare basalt suite that crystallized from a relatively evolved lunar melt. [source]


    Aorounga and Gweni Fada impact structures, Chad: Remote sensing, petrography, and geochemistry of target rocks

    METEORITICS & PLANETARY SCIENCE, Issue 9-10 2005
    Christian Koeberl
    We believe the results of various data treatments provide extensive new perspective on the macro-structural and topographic divisions for these two impact structures. Our remote sensing studies indicate revised diameters of Aorounga and Gweni Fada of 16 and 22 km, respectively. We selected samples from these two structures for their petrographic, geochemical, and Rb-Sr and Sm-Nd isotopic characteristics. In samples from both structures, evidence for shock metamorphism was found in the form of single or multiple sets of planar deformation features in quartz, which confirms the impact origin for both the Aorounga and Gweni Fada structures. The crystallographic orientations of PDFs indicate maximum shock levels of 20,30 GPa for samples from the central parts of both structures. The PDF orientations are characteristic for the orientations observed elsewhere in shocked sandstones, with the higher angles in the orientation histograms being fairly abundant. Geochemically, the rocks are typical upper-crustal sandstones. [source]


    Spectacular fall of the Kendrapara H5 chondrite

    METEORITICS & PLANETARY SCIENCE, Issue S8 2004
    D. Dhingra
    In a rare observation, the fireball was seen by two airline pilots, providing direction of the trail with reasonable accuracy, consistent with ground-based observations. A few fragments of the meteorite were subsequently recovered along the end of the trail in different parts of Kendrapara district (20°30, N; 86°26, E) of Orissa. Based on petrography and chemical composition, the meteorite is classified as H5 chondrite. The cosmogenic radionuclides54Mn,22Na,60Co, and26Al and tracks have been studied in this stony meteorite. Two of the fragments show an unusually high activity of60Co (,160 dpm/kg) indicating a meteoroid radius of 50,150 cm. Assuming that less than 10% (by weight) of the fragments could be recovered because of difficult terrain, an atmospheric mass ablation of >95% is estimated. Based on the observations of the trail and the estimated mass ablation, orbital parameters of the meteoroid have been calculated. The aphelion is found to lie in the asteroidal belt (1.8,2.4 AU), but the inclination of the orbit is large (22°,26°) with respect to the ecliptic. Noble gases have been analysed in two samples of this meteorite. He and Ne are dominantly cosmogenic. Using production rates based on the sample depth derived from60Co content,21Ne-based exposure age of 4.50 ± 0.45 Ma is derived for Kendrapara. One of the samples, known to be more deeply shielded based on high60Co activity, shows the presence of80Kr,82Kr, and128Xe produced by (n, ,) reaction on79Br,81Br, and127I, respectively. The (80Kr/82Kr)n ratio of 3.5 ± 0.9 is consistent with neutrons being mostly thermal. Trapped84Kr and132Xe are in the expected range for metamorphic grade H5. [source]


    Geochemistry and shock petrography of the Crow Creek Member, South Dakota, USA: Ejecta from the 74-Ma Manson impact structure

    METEORITICS & PLANETARY SCIENCE, Issue 1 2004
    Crispin KATONGO
    The shocked minerals represent impact ejecta from the 74-Ma Manson impact structure (MIS). This study was aimed at determining the bulk chemical compositions and analysis of planar deformation features (PDFs) of shocked quartz; for the basal and marly units of the Crow Creek Member. We studied samples from the Gregory 84-21 core, Iroquois core and Wakonda lime quarry. Contents of siderophile elements are generally high, but due to uncertainties in the determination of Ir and uncertainties in compositional sources for Cr, Co, and Ni, we could not confirm an extraterrestrial component in the Crow Creek Member. We recovered several shocked quartz grains from basal-unit samples, mainly from the Gregory 84-21 core, and results of PDF measurements indicate shock pressures of at least 15 GPa. All the samples are composed chiefly of SiO2 (29,58 wt%), Al2O3 (6,14 wt%), and CaO (7,30 wt%). When compared to the composition of North American Shale Composite, the samples are significantly enriched in CaO, P2O5, Mn, Sr, Y, U, Cr, and Ni. The contents of rare earth elements (REE), high field strength elements (HFSE), Cr, Co, Sc, and their ratios and chemical weathering trends, reflect both felsic and basic sources for the Crow Creek Member, an inference, which is consistent with the lithological compositions in the environs of the MIS. The high chemical indices of alteration and weathering (CIA' and CIW': 75,99), coupled with the Al2O3 -(CaO*+Na2O)-K2O (A-CN'-K) ratios, indicate that the Crow Creek Member and source rocks had undergone high degrees of chemical weathering. The expected ejecta thicknesses at the sampled locations (409 to 219 km from Manson) were calculated to range from about 1.9 to 12.2 cm (for the present-day crater radius of Manson), or 0.4 to 2.4 cm (for the estimated transient cavity radius). The trend agrees with the observed thicknesses of the basal unit of the Crow Creek Member, but the actually observed thicknesses are larger than the calculated ones, indicating that not all of the basal unit comprises impact ejecta. [source]


    Evolution of Hydrothermal System at the Dizon Porphyry Cu-Au Deposit, Zambales, Philippines

    RESOURCE GEOLOGY, Issue 2 2005
    Akira Imai
    Abstract. Evolution of hydrothermal system from initial porphyry Cu mineralization to overlapping epithermal system at the Dizon porphyry Cu-Au deposit in western central Luzon, Zambales, Philippines, is documented in terms of mineral paragen-esis, fluid inclusion petrography and microthermometry, and sulfur isotope systematics. The paragenetic stages throughout the deposit are summarized as follows; 1) stockwork amethystic quartz veinlets associated with chalcopyrite, bornite, magnetite and Au enveloped by chlorite alteration overprinting biotite alteration, 2) stockwork quartz veinlets with chalcopyrite and pyrite associated with Au and chalcopyrite and pyrite stringers in sericite alteration, 3) stringer quartz veinlets associated with molybdenite in sericite alteration, and 4) WNW-trending quartz veins associated with sphalerite and galena at deeper part, while enargite and stibnite at shallower levels associated with advanced argillic alteration. Chalcopyrite and bornite associated with magnetite in quartz veinlet stockwork (stage 1) have precipitated initially as intermediate solid solution (iss) and bornite solid solution (bnss), respectively. Fluid inclusions in the stockwork veinlet quartz consist of gas-rich inclusions and polyphase inclusions. Halite in polyphase inclusions dissolves at temperatures ranging from 360d,C to >500d,C but liquid (brine) and gas (vapor) do not homogenize at <500d,C. The maximum pressure and minimum temperature during the deposition of iss and bnss with stockwork quartz veinlets are estimated to be 460 bars and 500d,C. Fluid inclusions in veinlet stockwork quartz enveloped in sericite alteration (stage 2) consist mainly of gas-rich inclusions and polyphase inclusions. In addition to the possible presence of saturated NaCl crystals at the time of entrapment of fluid inclusions that exhibit the liquid-vapor homogenization temperatures lower than the halite dissolution temperatures in some samples, wide range of temperatures of halite dissolution and liquid-vapor homogenization of polyphase inclusions from 230d,C to >500d,C and from 270d,C to >500d,C, respectively, suggests heterogeneous entrapment of gaseous vapor and hypersaline brine. The minimum pressure and temperature are estimated to be about 25 bars and 245d,C. Fluid inclusions in veinlet quartz associated with molybdenite (stage 3) are dominated by gas-rich inclusions accompanied with minor liquid-rich inclusions that homogenize at temperatures between 350d,C and 490d,C. Fluid inclusions in vuggy veinlet quartz associated with stibnite (stage 4) consist mainly of gas-rich inclusions with subordinate polyphase inclusions that do not homogenize below 500d,C. Fluid inclusions in veinlet quartz associated with galena and sphalerite (stage 4) are composed of liquid-rich two-phase inclusions, and they homogenize into liquid phase at temperatures ranging widely from 190d,C to 300d,C (suggesting boiling) and the salinity ranges from 1.0 wt% to 3.4 wt% NaCl equivalent. A pressure of about 15 bars is estimated for the dilute aqueous solution of 190d,C from which veinlet quartz associated with galena and sphalerite precipitated. In addition to a change in temperature-pressure regime from lithostatic pressure during the deposition of iss and bnss with stockwork quartz veinlets to hydrostatic pressure during fracture-controlled quartz veinlet associated with galena and sphalerite, a decrease in pressure is supposed to have occurred due to unroofing or removal of the overlying piles during the temperature decrease in the evolution of hydrothermal system. The majority of the sulfur isotopic composition of sulfides ranges from ±0 % to +5 %. Sulfur originated from an iso-topically uniform and homogeneous source, and the mineralization occurred in a single hydrothermal system. [source]