Persistent Expression (persistent + expression)

Distribution by Scientific Domains


Selected Abstracts


Muscle stem cells and model systems for their investigation

DEVELOPMENTAL DYNAMICS, Issue 12 2007
Nicolas Figeac
Abstract Stem cells are characterized by their clonal ability both to generate differentiated progeny and to undergo self-renewal. Studies of adult mammalian organs have revealed stem cells in practically every tissue. In the adult skeletal muscle, satellite cells are the primary muscle stem cells, responsible for postnatal muscle growth, hypertrophy, and regeneration. In the past decade, several molecular markers have been found that identify satellite cells in quiescent and activated states. However, despite their prime importance, surprisingly little is known about the biology of satellite cells, as their analysis was for a long time hampered by a lack of genetically amenable experimental models where their properties can be dissected. Here, we review how the embryonic origin of satellite cells was discovered using chick and mouse model systems and discuss how cells from other sources can contribute to muscle regeneration. We present evidence for evolutionarily conserved properties of muscle stem cells and their identification in lower vertebrates and in the fruit fly. In Drosophila, muscle stem cells called adult muscle precursors (AMP) can be identified in embryos and in larvae by persistent expression of a myogenic basic helix,loop,helix factor Twist. AMP cells play a crucial role in the Drosophila life cycle, allowing de novo formation and regeneration of adult musculature during metamorphosis. Based on the premise that AMPs represent satellite-like cells of the fruit fly, important insight into the biology of vertebrate muscle stem cells can be gained from genetic analysis in Drosophila. Developmental Dynamics 236:3332,3342, 2007. © 2007 Wiley-Liss, Inc. [source]


The spatio-temporal and subcellular expression of the candidate Down syndrome gene Mnb/Dyrk1A in the developing mouse brain suggests distinct sequential roles in neuronal development

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2008
Barbara Hämmerle
Abstract It is widely accepted that the neurological alterations in Down syndrome (DS) are principally due to modifications in developmental processes. Accordingly, a large part of the research on DS in recent years has focused on chromosome 21 genes that influence brain development. MNB/DYRK1A is one of the genes on human chromosome 21 that has raised most interest, due to its relationship with the brain functions that are altered in DS. Although a number of interesting experimental mouse models for DS are being developed, we still know little about the expression of Mnb/Dyrk1A during mouse brain development. Here, we report that Mnb/Dyrk1A displays a rather dynamic spatio-temporal expression pattern during mouse central nervous system development. Our data indicate that Mnb/Dyrk1A is specifically expressed in four sequential developmental phases: transient expression in preneurogenic progenitors, cell cycle-regulated expression in neurogenic progenitors, transient expression in recently born neurones, and persistent expression in late differentiating neurones. Our results also suggest that the subcellular localization of MNB/DYRK1A, including its translocation to the nucleus, is finely regulated. Thus, the MNB/DYRK1A protein kinase could be a key element in the molecular machinery that couples sequential events in neuronal development. This rich repertoire of potential functions in the developing central nervous system is suitable to be linked to the neurological alterations in DS through the use of mouse experimental models. [source]


Significance of consensus CYC-binding sites found in the promoters of both ChCYC and ChRAD genes in Chirita heterotricha (Gesneriaceae)

JOURNAL OF SYSTEMATICS EVOLUTION, Issue 4 2010
Xia YANG
Abstract,CYC -like genes are widely conserved in controlling floral dorsoventral asymmetry (zygomorphy) through persistent expression in corresponding domains in core eudicots. To understand how CYC -like gene expression is maintained during flower development, we selected Chirita heterotricha as a material and isolated the promoter sequences of the ChCYC1C and ChCYC1D genes, homologs of CYC, by inverse polymerase chain reaction. Further promoter analyses led to the identification of a putative cis -regulatory element in each promoter matching the consensus DNA binding site for Antirrhinum CYC protein: GGCCCCTC at ,165 for ChCYC1C, and GGCCCCCC at ,163 for ChCYC1D. This indicates that both the ChCYC1C and ChCYC1D genes have probably evolved autoregulatory loops to sustain their expression in developing flowers. We also isolated the coding and promoter sequences of the ChRAD gene, a homolog of Antirrhinum RAD. Promoter analysis showed that the ChRAD gene promoter also contained a putative CYC-binding site (GGCCCAC at ,134). Therefore, ChRAD is likely a direct target of the ChCYC1 genes, which is similar to Antirrhinum RAD. These results imply that the establishment of floral zygomorphy in Chirita may have been achieved by the evolution of an autoregulatory loop for CYC -like genes, which was probably accompanied by simultaneous co-option of the RAD -like gene into their regulatory network. [source]


The promise and challenges of bioengineered recombinant clotting factors

JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 8 2005
S. W. PIPE
Summary., The past 10 years of clinical experience have demonstrated the safety and efficacy of recombinant clotting factors. With the adoption of prophylactic strategies, there has been considerable progress in avoiding the complications of hemophilia. Now, insights from our understanding of clotting factor structure and function, mechanisms of hemophilia and inhibitors, gene therapy advances and a worldwide demand for clotting factor concentrates leave us on the brink of embracing targeted bioengineering strategies to further improve hemophilia therapeutics. The ability to bioengineer recombinant clotting factors with improved function holds promise to overcome some of the limitations in current treatment, the high costs of therapy and increase availability to a broader world hemophilia population. Most research has been directed at overcoming the inherent limitations of rFVIII expression and the inhibitor response. This includes techniques to improve rFVIII biosynthesis and secretion, functional activity, half-life and antigenicity/immunogenicity. Some of these proteins have already reached commercialization and have been utilized in gene therapy strategies, while others are being evaluated in pre-clinical studies. These novel proteins partnered with advances in gene transfer vector design and delivery may ultimately achieve persistent expression of FVIII leading to an effective long-term treatment strategy for hemophilia A. In addition, these novel FVIII proteins could be partnered with new advances in alternative recombinant protein production in transgenic animals yielding an affordable, more abundant supply of rFVIII. Novel rFIX proteins are being considered for gene therapy strategies whereas novel rVIIa proteins are being evaluated to improve the potency and extend their plasma half-life. This review will summarize the status of current recombinant clotting factors and the development and challenges of recombinant clotting factors bioengineered for improved function. [source]


Reversal of the silencing of tetracycline-controlled genes requires the coordinate action of distinctly acting transcription factors

THE JOURNAL OF GENE MEDICINE, Issue 1 2005
Renata Pankiewicz
Abstract Background Regulation of genes transferred to eukaryotic organisms is often limited by the lack of consistent expression levels in all transduced cells, which may result in part from epigenetic gene silencing effects. This reduces the efficacy of ligand-controlled gene switches designed for somatic gene transfers such as gene therapy. Methods A doxycycline-controlled transgene was stably introduced in human cells, and clones were screened for epigenetic silencing of the transgene. Various regulatory proteins were targeted to the silent transgene, to identify those that would mediate regulation by doxycycline. Results A doxycycline-controlled minimal promoter was found to be prone to gene silencing, which prevents activation by a fusion of the bacterial TetR DNA-binding domain with the VP16 activator. DNA modification studies indicated that the silenced transgene adopts a poorly accessible chromatin structure. Several cellular transcriptional activators were found to restore an accessible DNA structure when targeted to the silent transgene, and they cooperated with Tet-VP16 to mediate regulation by doxycycline. Conclusions Reversal of the silencing of a tetracycline-regulated minimal promoter requires a chromatin-remodeling activity for subsequent promoter activation by the Tet-VP16 fusion protein. Thus, distinct regulatory elements may be combined to obtain long-term regulation and persistent expression of exogenous genes in eukaryotic cells. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Expression of FasL in squamous cell carcinomas of the cervix and cervical intraepithelial neoplasia and its role in tumor escape mechanism,

CANCER, Issue 5 2006
Ramy Ibrahim M.D.
Abstract BACKGROUND To date, several mechanisms have been described by which malignant cells escape from the immune system. One of these is through the expression of FasL. The authors hypothesized that the Fas/FasL interaction enables cervical carcinoma cells to induce apoptosis of the cells of the immune system and thereby escape from them. METHODS The authors tested the expression of FASL on the surface of cervical carcinoma tissues. Next, they stained the same cervical tissues with anti-human leukocyte common antigen and TUNEL to identify apoptotic cells. An in vitro functional assay was then done to test if the FASL expressed on the surface of cervical carcinoma cell lines was or was not responsible for inducing apoptosis in T-cells. Finally, they compared the expression of FASL on normal and dysplastic cervical tissues. RESULTS Ninety-four percent of the cervical carcinoma tissues the authors tested expressed FasL and the majority of the apoptotic cells in the specimens were leukocytes with very few tumor cells. In the in vitro functional assay, only the Fasl expressing cell line and not the Fasl negative cell line was able to induce apoptosis of the Fas-expressing Jurkat cells. On examining the normal cervical tissues, the authors found that the expression of Fasl was confined to the basal cell layer with loss of expression observed in the suprabasal layers, which made it an immune privileged site. Conversely, there was persistent expression of FasL in the dysplastic layers in cervical dysplasia and squamous cell carcinoma specimens. CONCLUSIONS The findings of the current study support the authors' hypothesis that persistent expression of FasL plays a role in the ability of cervical carcinoma cells to escape from the immune system. Cancer 2006. Published 2006 by the American Cancer Society. [source]