Articular Chondrocytes (articular + chondrocyte)

Distribution by Scientific Domains

Kinds of Articular Chondrocytes

  • adult human articular chondrocyte
  • bovine articular chondrocyte
  • human articular chondrocyte


  • Selected Abstracts


    Overexpression of human fibroblast growth factor 2 stimulates cell proliferation in an ex vivo model of articular chondrocyte transplantation,

    THE JOURNAL OF GENE MEDICINE, Issue 2 2004
    Henning Madry
    Abstract Background Genetically engineered chondrocytes could be used to enhance cartilage repair. Fibroblast growth factor 2 (FGF-2) is a mitogen for chondrocytes and may be a candidate for gene transfer approaches to stimulate chondrocyte proliferation. In the present study, we tested the hypothesis that human FGF-2 (hFGF-2) gene transfer into articular chondrocytes modulates cell proliferation in an ex vivo model of chondrocyte transplantation. Methods Transfection of articular chondrocytes with an expression plasmid vector carrying the cDNA for hFGF-2 under the control of the cytomegalovirus promoter/enhancer mediated transgene expression and synthesis of biologically relevant amounts of the recombinant hFGF-2 protein. Articular chondrocytes transfected with the Escherichia coli ,-galactosidase (lacZ) gene or a hFGF-2 cDNA were transplanted onto the surface of articular cartilage explants. Results The tissue formed by the chondrocytes expressing hFGF-2 was thicker and contained more cells than control cultures. Quantitative analysis of [3H]thymidine and [35S]sulfate incorporation in composite cultures revealed that hFGF-2 transfection stimulated mitogenic activity in the new tissue but did not augment matrix glycosaminoglycan synthesis. Conclusions These data support the concept that chondrocytes overexpressing a hFGF-2 cDNA selectively modulate cell proliferation in an ex vivo model of chondrocyte transplantation. These results suggest that therapeutic hFGF-2 gene transfer may be applicable for the treatment of articular cartilage disorders, such as traumatic defects in which cellular repopulation is a therapeutic goal. Copyright © 2004 John Wiley & Sons, Ltd. [source]


    The melanocortin system in articular chondrocytes: Melanocortin receptors, pro-opiomelanocortin, precursor proteases, and a regulatory effect of ,-melanocyte,stimulating hormone on proinflammatory cytokines and extracellular matrix components

    ARTHRITIS & RHEUMATISM, Issue 10 2009
    Susanne Grässel
    Objective The pro-opiomelanocortin (POMC),derived neuropeptide ,-melanocyte,stimulating hormone (,-MSH) mediates its effects via melanocortin (MC) receptors. This study was carried out to investigate the expression patterns of the MC system and the effects of ,-MSH in human articular chondrocytes. Methods Articular chondrocytes established from human osteoarthritic joint cartilage were analyzed by reverse transcription,polymerase chain reaction (RT-PCR) and Western blotting for the expression of MC receptors, POMC, and prohormone convertases (PCs). MC-1 receptor (MC-1R) expression in articular cartilage was further studied by immunohistochemistry. Ca2+ and cAMP assays were used to monitor ,-MSH signaling, while studies of ,-MSH function were performed in cultures with chondrocyte micromass pellets stimulated with ,-MSH. Expression of cytokines and extracellular matrix (ECM) components was determined by real-time RT-PCR, Western immunoblotting, and enzyme-linked immunosorbent assays. Results MC-1R expression was detected in articular chondrocytes in vitro and in articular cartilage in situ. In addition, expression of transcripts for MC-2R, MC-5R, POMC, and PCs was detected in articular chondrocytes. Stimulation with ,-MSH increased the levels of intracellular cAMP, but not Ca2+, in chondrocytes. Both messenger RNA and protein expression of various proinflammatory cytokines, collagens, matrix metalloproteinases (MMPs), and SOX9 was modulated by ,-MSH. Conclusion Human articular chondrocytes are target cells for ,-MSH. The effects of ,-MSH on expression of cytokines and MMPs suggest that this neuropeptide plays a role in inflammatory and degenerative processes in cartilage. It is conceivable that inflammatory reactions can be mitigated by the induction of endogenous MCs or administration of ,-MSH to the affected joints. The induction pattern of regulatory and structural ECM components such as collagens as well as SOX9 and anabolic and catabolic cytokines points to a function of ,-MSH as a trophic factor in skeletal development during endochondral ossification rather than as a factor in homeostasis of permanent cartilage. [source]


    Induction of chondrogenesis from human embryonic stem cells without embryoid body formation by bone morphogenetic protein 7 and transforming growth factor ,1

    ARTHRITIS & RHEUMATISM, Issue 12 2009
    Toshiyuki Nakagawa
    Objective Human embryonic stem cells (ESCs) provide an unlimited supply of pluripotent cells for articular cartilage tissue engineering and regenerative medicine applications. Articular cartilage is an avascular tissue with precise polarity and organization comprising 3 distinct functional zones: surface, middle, and deep. To date, attempts at differentiating human ESCs into articular chondrocytes have been unsuccessful. The majority of studies have focused on chondrogenic (but not specifically articular cartilage) differentiation. Furthermore, previous investigations of induction of chondrogenesis by human ESCs required embryoid body formation; however, embryoid body formation often results in heterogeneous differentiation. The present study was undertaken to determine the in vitro chondrogenic potential of bone morphogenetic protein 7 (BMP-7) and transforming growth factor ,1 (TGF,1),induced human ESC differentiation toward the articular cartilage phenotype. Methods Dissociated single human ESCs were cultured and passaged on a gelatin-coated flask. The human ESCs were cultured as an aggregate in a pellet culture system for 14 days in basal chondrogenic medium (CM), CM with TGF,1, CM with BMP-7, or CM with both TGF,1 and BMP-7. Results The size and wet weight of the cartilage pellets and glycosaminoglycan levels increased, with the smallest, intermediate, and greatest increases, respectively, observed with CM plus TGF,1 treatment, CM plus BMP-7 treatment, and CM plus TGF,1 and BMP-7 treatment (compared with CM treatment alone). The largest size and highest weight of the pellet was in the group in which TGF,1 and BMP-7 were added to the medium. However, expression of the genes for cartilage-specific aggrecan and type II collagen II, as assessed by determination of messenger RNA levels, was highest in the BMP-7,treated group. Superficial zone protein (SZP)/lubricin, a marker of the superficial zone articular chondrocyte, was not detectable under identical culture conditions. Conclusion These results demonstrate an efficient and reproducible model system of human ESC-induced chondrogenesis, using a novel direct plating method in which intervening embryoid body formation does not occur. Further work is needed for optimization of conditions to obtain the articular cartilage phenotype that includes the superficial zone marker as demonstrated by SZP/lubricin synthesis. [source]


    Critical role of C/EBP, and C/EBP, factors in the stimulation of the cyclooxygenase-2 gene transcription by interleukin-1, in articular chondrocytes

    FEBS JOURNAL, Issue 23 2000
    Béatrice Thomas
    The activity of the [,831; +103] promoter of the human cyclooxygenase-2 gene in cultured rabbit chondrocytes is stimulated 2.9 ± 0.3-fold by interleukin-1, and this stimulation depends on [,132; ,124] C/EBP binding-and [,223; ,214] NF-,B binding-sites. The C/EBP, and C/EBP, factors bind to the [,132; ,124] sequence. The [,61; ,53] sequence is also recognized by C/EBP, and C/EBP, as well as USF. Mutation of the whole [,61; ,53] sequence abolished the stimulation of transcription but single mutations of the C/EBP or USF site did not alter the activity of the promoter, suggesting that the factors bound to the proximal [,61; ,53] sequence interact with different members of the general transcription machinery. The [,223; ,214] site binds only the p50/p50 homodimer and a non-rel-related protein, but not the transcriptionally active heterodimer p50/p65. The p50/p50 homodimer could interact with the C/EBP family members bound to the [,132; ,124] sequence for full stimulation of the COX-2 transcription by interleukin-1, in chondrocytes. By contrast, the [,448; ,449] sequence binds with a low affinity both the p50/p50 homodimeric and p50/p65 heterodimeric forms of NF-,B but has no role in the regulation of the human COX-2 promoter in chondrocytes. [source]


    Matrix metalloproteinase (MMP)-12 regulates MMP-9 expression in interleukin-1,-treated articular chondrocytes

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2008
    Hwanhee Oh
    Abstract Limited information is available on the expression and role of matrix metalloproteinase (MMP)-12 in chondrocytes. We characterized the expression mechanism of MMP-12 and possible function in chondrocytes. Interleukin (IL)-1, induced the expression and activation of MMP-12 in primary culture chondrocytes and cartilage explants via mitogen-activated protein (MAP) kinase signaling pathways. Among MAP kinases, extracellular signal-regulated kinase and p38 kinase are necessary for MMP-12 expression, whereas c-jun N-terminal kinase is required for the activation of MMP-12. The possibility that MMP-12 acts as a modulator of other MMP was examined. MMP-12 alone did not affect other MMP expressions. However, MMP-12 enhanced expression and activation of MMP-9 in the presence of IL-1,. Our results indicate that IL-1, in chondrocytes induces the expression and activation of MMP-12, which, in turn, augments MMP-9 expression and activation. J. Cell. Biochem. 105: 1443,1450, 2008. © 2008 Wiley-Liss, Inc. [source]


    Interleukin-4 antagonizes oncostatin M and transforming growth factor beta-induced responses in articular chondrocytes

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2008
    Mohammed El Mabrouk
    Abstract Oncostatin M (OSM) stimulates cartilage degradation in rheumatoid arthritis (RA) by inducing matrix metalloproteinases (MMPs) and aggrecanases (ADAMTS; a disintegrin and metalloproteinase with thrombospondin motif). Transforming growth factor beta (TGF-,1) induces cartilage repair in joints but in excessive amounts, promotes inflammation. OSM and TGF-,1 also induce tissue inhibitor of metalloproteinase-3 (TIMP-3), an important natural inhibitor of MMPs, aggrecanases, and tumor necrosis factor alpha converting enzyme (TACE), the principal proteases involved in arthritic inflammation and cartilage degradation. We studied cartilage protective mechanisms of the antiinflammatory cytokine, interleukin-4 (IL-4). IL-4 strongly (MMP-13 and TIMP-3) or minimally (ADAMTS-4) suppressed OSM-induced gene expression in chondrocytes. IL-4 did not affect OSM-stimulated phosphorylation of extracellular signal-regulated kinases (ERKs), protein 38 (p38), c-Jun N-terminal kinase (JNK) and Stat1. Lack of additional suppression with their inhibitors suggested that MMP-13, ADAMTS-4, and TIMP-3 inhibition was independent of these mediators. IL-4 also downregulated TGF-,1-induced TIMP-3 gene expression, Smad2, and JNK phosphorylation. Additional suppression of TIMP-3 RNA by JNK inhibitor suggests JNK implication. The cartilage protective effects of IL-4 in animal models of arthritis may be due to its inhibition of MMPs and ADAMTS-4 expression. However, suppression of TIMP-3 suggests caution for using IL-4 as a cartilage protective therapy. J. Cell. Biochem. 103: 588,597, 2008. © 2007 Wiley-Liss, Inc. [source]


    Enhanced cartilage tissue engineering by sequential exposure of chondrocytes to FGF-2 during 2D expansion and BMP-2 during 3D cultivation

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 1 2001
    Ivan Martin
    Abstract Bovine calf articular chondrocytes, either primary or expanded in monolayers (2D) with or without 5 ng/ml fibroblast growth factor-2 (FGF-2), were cultured on three-dimensional (3D) biodegradable polyglycolic acid (PGA) scaffolds with or without 10 ng/ml bone morphogenetic protein-2 (BMP-2). Chondrocytes expanded without FGF-2 exhibited high intensity immunostaining for smooth muscle ,-actin (SMA) and collagen type I and induced shrinkage of the PGA scaffold, thus resembling contractile fibroblasts. Chondrocytes expanded in the presence of FGF-2 and cultured 6 weeks on PGA scaffolds yielded engineered cartilage with 3.7-fold higher cell number, 4.2-fold higher wet weight, and 2.8-fold higher wet weight glycosaminoglycan (GAG) fraction than chondrocytes expanded without FGF-2. Chondrocytes expanded with FGF-2 and cultured on PGA scaffolds in the presence of BMP-2 for 6 weeks yielded engineered cartilage with similar cellularity and size, 1.5-fold higher wet weight GAG fraction, and more homogenous GAG distribution than the corresponding engineered cartilage cultured without BMP-2. The presence of BMP-2 during 3D culture had no apparent effect on primary chondrocytes or those expanded without FGF-2. In summary, the presence of FGF-2 during 2D expansion reduced chondrocyte expression of fibroblastic molecules and induced responsiveness to BMP-2 during 3D cultivation on PGA scaffolds. © 2001 Wiley-Liss, Inc. [source]


    Human articular chondrocytes suppress in vitro proliferation of anti-CD3 activated peripheral blood mononuclear cells

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2006
    Chiara Bocelli-Tyndall
    Objective: To investigate whether mature human articular chondrocytes (AC) exhibit an antiproliferative effect on activated peripheral blood mononuclear cells (PBMC) and to compare this effect with other cells of mesenchymal origin. Methods: AC from healthy cadaveric cartilage were grown for different passages, in the absence (control) or presence of factors enhancing cell de-differentiation (transforming growth factor (TGF),1, fibroblast growth factor (FGF)-2, and platelet derived growth factor (PDGF)bb-TFP medium). Cell ability to suppress PBMC proliferation driven by anti-CD3 antibody was measured by tritiated thymidine uptake following incubation for 48 h at different PBMC:AC ratios and expressed as percent of residual proliferation (RP). AC antiproliferative effect was compared to that of control dermal fibroblasts (DF) and bone marrow stromal cells (BMSC). Results: AC exhibited a cell number-dependent antiproliferative effect. The strongest effect (up to 2% RP) was measured using the least expanded AC cultures. The use of TFP medium for AC expansion resulted in a significantly lower antiproliferative effect, in the range of that induced by BMSC (up to 18% RP). Also DF induced a marked antiproliferative effect (up to 11% RP). Conclusion: We report for the first time that human AC have a marked antiproliferative effect on anti-CD3 stimulated PBMC, which is reduced upon culture in medium-inducing extensive cell de-differentiation. These results reflect the immunosuppressive properties observed for other different mesenchymal cell types and raise the question of a potential common physiological role in local tissue protection. J. Cell. Physiol. 209: 732,734, 2006. © 2006 Wiley-Liss, Inc. [source]


    Transcriptional and proteolytic regulation of the insulin-like growth factor-I system of equine articular chondrocytes by recombinant equine interleukin-1,

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2006
    Ryan M. Porter
    Interleukin-1 (IL-1) and insulin-like growth factor-I (IGF-I), which have opposing effects on matrix metabolism within articular cartilage, are thought to play prominent roles in the pathogenesis of osteoarthritis. To better understand the link between these anabolic (IGF-I) and catabolic (IL-1) stimuli, we examined exogenous IL-1 regulation of the IGF-I signaling system of articular chondrocytes (ACs). Equine ACs from non-arthritic stifle joints were expanded in monolayer culture, encapsulated for 10 days in alginate beads, and stimulated as high-density monolayers with recombinant equine IL-1, (0, 1, 10 ng/ml) for 48 h. IL-1, enhanced expression of IGF-IR levels, as determined by both [125I]-IGF-I binding studies and Western blotting, while reducing the concentration of endogenous IGF-I detected in conditioned media by radioimmunoassay. Western ligand blotting revealed that chondrocytes primarily secreted IGF binding proteins (IGFBPs) with molecular weights of 28,30 and 32,34 kDa, which were identified as IGFBPs 5 and 2, respectively, and that IL-1, treatment diminished IGFBP-2, the prominent homolog in conditioned media. Northern blot analysis suggested IL-1, regulation of IGF-I and, to some extent, IGF-IR was mediated by transcription; however, the cytokine did not affect IGFBP-2 expression. To test for evidence of proteolysis by matrix metalloproteinases (MMPs), additional cultures were co-incubated with inhibitors for MMPs 2/9, 3, and 8. IGFBP-2 suppression was partially reversed by gelatinase (MMP-2/9) inhibition. In summary, these findings further delineate the role of IL-1 as a key regulator of the IGF-I system within articular cartilage, demonstrating that regulation occurs through both direct (transcriptional) and indirect (proteolytic) mechanisms. J. Cell. Physiol. 209: 542,550, 2006. © 2006 Wiley-Liss, Inc. [source]


    Experimental and mathematical study of the influence of growth factors on the growth kinetics of adult human articular chondrocytes,

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2005
    Andrea Barbero
    This study aimed at determining how kinetic parameters of adult human articular chondrocytes (AHAC) growth are modulated by the growth factor combination TGF,1, FGF-2, and PDGF BB (TFP), recently shown to stimulate AHAC proliferation. AHAC, isolated from cartilage biopsies of three individuals, were cultured in medium without (CTR) or with TFP. For growth curves, AHAC were seeded at 1,000 cells/cm2 and cultured for 12 days, with cell numbers measured fluorimetrically in the same wells every 12 h. For microcolony tests, AHAC were seeded at 2.5 cells/cm2 and cultured for 6 days, with cell numbers determined for each microcolony by phase contrast microscopy every 8 h. A mathematical model combining delay and logistic equations was developed to capture the growth kinetic parameters and to enable the description of the complete growth process of the cell culture. As compared to CTR medium, the presence of TFP increased the number of cells/well starting from the fifth day of culture, and a four-fold larger cell number was reached at confluency. For single microcolonies, TFP reduced the time for the first cell division by 26.6%, the time for subsequent cell divisions (generation time) by 16.8%, and the percentage of quiescent cells (Qc) by 42.5%. The mathematical model fitted well the experimental data of the growth kinetic. Finally, using both microcolony tests and the mathematical model, we determined that prolonged cell expansion induces an enrichment of AHAC with shorter first division time, but not of those with shorter generation time. © 2005 Wiley-Liss, Inc. [source]


    Immunophenotypic analysis of human articular chondrocytes: Changes in surface markers associated with cell expansion in monolayer culture

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2005
    Jose Diaz-Romero
    Cartilage tissue engineering relies on in vitro expansion of primary chondrocytes. Monolayer is the chosen culture model for chondrocyte expansion because in this system the proliferative capacity of chondrocytes is substantially higher compared to non-adherent systems. However, human articular chondrocytes (HACs) cultured as monolayers undergo changes in phenotype and gene expression known as "dedifferentiation." To gain a better understanding of the cellular mechanisms involved in the dedifferentiation process, our research focused on the characterization of the surface molecule phenotype of HACs in monolayer culture. Adult HACs were isolated by enzymatic digestion of cartilage samples obtained post-mortem. HACs cultured in monolayer for different time periods were analyzed by flow cytometry for the expression of cell surface markers with a panel of 52 antibodies. Our results show that HACs express surface molecules belonging to different categories: integrins and other adhesion molecules (CD49a, CD49b, CD49c, CD49e, CD49f, CD51/61, CD54, CD106, CD166, CD58, CD44), tetraspanins (CD9, CD63, CD81, CD82, CD151), receptors (CD105, CD119, CD130, CD140a, CD221, CD95, CD120a, CD71, CD14), ectoenzymes (CD10, CD26), and other surface molecules (CD90, CD99). Moreover, differential expression of certain markers in monolayer culture was identified. Up-regulation of markers on HACs regarded as distinctive for mesenchymal stem cells (CD10, CD90, CD105, CD166) during monolayer culture suggested that dedifferentiation leads to reversion to a primitive phenotype. This study contributes to the definition of HAC phenotype, and provides new potential markers to characterize chondrocyte differentiation stage in the context of tissue engineering applications. © 2004 Wiley-Liss, Inc. [source]


    Control of human articular chondrocyte differentiation by reduced oxygen tension

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2004
    Christopher L. Murphy
    Cell number is often a limiting factor in studies of chondrocyte physiology, particularly for human investigations. Chondrocytes can be readily proliferated in monolayer culture, however, differentiated phenotype is soon lost. We therefore endeavored to restore normal phenotype to human chondrocytes after serial passage in monolayer culture by manipulating cell morphology and oxygen tension towards the in vivo state. Third passage cells were encapsulated in alginate and exposed to either 20% or more physiologic 5% oxygen tensions. To assess cell phenotype, gene expression was measured using TaqMan real-time PCR. Encapsulated, primary chondrocytes cultured in 20% oxygen were used as a positive reference. Passaged human chondrocytes were fibroblastic in appearance and had lost normal phenotype as evidenced by a decrease in expression of collagen II, aggrecan, and sox9 genes of 66, 6, and 14 fold, respectively; with concomitant high expression of type I collagen (22 fold increase). A partial regaining of the differentiated phenotype was observed by encapsulation in 20% oxygen; however, even after 4 weeks, collagen II gene expression was not fully restored. Collagen II and aggrecan expression were increased, on average, 3 fold, in 5% oxygen tension compared to 20% cultures. Furthermore, matrix glycosaminoglycan (GAG) levels were significantly increased in reduced oxygen. In fact, after 4 weeks in 5% oxygen, encapsulated third passage cells had collagen II expression fully regained and aggrecan and sox9 levels actually exceeding primary cell levels in 20% oxygen. Our results show that the phenotype of serially passaged human articular chondrocytes is more fully restored by combining encapsulation with culture in more physiological levels of oxygen. Sox9, an essential transcription factor for chondrocyte differentiation is strongly implicated in this process since its expression was upregulated almost 27 fold. These findings have implications for the optimal conditions for the in vitro culture of chondrocytes. © 2004 Wiley-Liss, Inc. [source]


    Epidermal growth factor stimulates proton efflux from chondrocytic cells

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2002
    Kevin E.H. Lui
    Proton efflux from chondrocytes alters the extracellular pH and ionic composition of cartilage, and influences the synthesis and degradation of extracellular matrix. Epidermal growth factor (EGF) promotes chondrocyte proliferation during skeletal development and accumulates in the synovial fluid in rheumatoid arthritis. The purpose of this study was to investigate the effect of EGF on proton efflux from chondrocytes. When monitored using a Cytosensor microphysiometer, EGF was found to rapidly activate proton efflux from CFK2 chondrocytic cells and rat articular chondrocytes. The actions of EGF were concentration-dependent with half-maximal effects at 0.3,0.7 ng/ml. Partial desensitization and time-dependent recovery of the response were observed following repeated exposures to EGF. EGF-induced proton efflux was dependent on extracellular glucose, and inhibitors of Na+/H+ exchange (NHE) markedly attenuated the initial increase in proton efflux. The response was diminished by inhibitors of phosphatidylinositol 3-kinase and phospholipase C, but not by inhibitors of MEK (MAPK/ERK kinase) or protein kinase A or C. Thus, EGF-induced proton efflux involves glucose metabolism and NHE, and is regulated by a discrete subset of EGF-activated signaling pathways. In vivo, proton efflux induced by EGF may lead to an acidic environment, enhancing turnover of cartilage matrix during development and in rheumatoid arthritis. © 2002 Wiley-Liss, Inc. [source]


    N -acetylcysteine prevents nitric oxide-induced chondrocyte apoptosis and cartilage degeneration in an experimental model of osteoarthritis

    JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 2 2010
    Shuji Nakagawa
    Abstract We investigated whether N -acetylcysteine (NAC), a precursor of glutathione, could protect rabbit articular chondrocytes against nitric oxide (NO)-induced apoptosis and could prevent cartilage destruction in an experimental model of osteoarthritis (OA) in rats. Isolated chondrocytes were treated with various concentrations of NAC (0,2 mM). Apoptosis was induced by 0.75 mM sodium nitroprusside (SNP) dehydrate, which produces NO. Cell viability was assessed by MTT assay, while apoptosis was evaluated by Hoechst 33342 and TUNEL staining. Intracellular reactive oxygen species (ROS) and glutathione levels were measured, and expression of p53 and caspase-3 were determined by Western blotting. To determine whether intraarticular injection of NAC prevents cartilage destruction in vivo, cartilage samples of an OA model were subjected to H&E, Safranin O, and TUNEL staining. NAC prevented NO-induced apoptosis, ROS overproduction, p53 up-regulation, and caspase-3 activation. The protective effects of NAC were significantly blocked by buthionine sulfoximine, a glutathione synthetase inhibitor, indicating that the apoptosis-preventing activity of NAC was mediated by glutathione. Using a rat model of experimentally induced OA, we found that NAC also significantly prevented cartilage destruction and chondrocyte apoptosis in vivo. These results indicate that NAC inhibits NO-induced apoptosis of chondrocytes through glutathione in vitro, and inhibits chondrocyte apoptosis and articular cartilage degeneration in vivo. © 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 28:156,163, 2010 [source]


    Sustained hypoxia enhances chondrocyte matrix synthesis

    JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 6 2009
    Christian H. Coyle
    Abstract Articular cartilage is an avascular tissue with chondrocytes in the deeper zones existing under conditions of sustained hypoxia. Using a hypoxic chamber to provide controlled hypoxia, this study was performed to determine whether sustained hypoxia enhances the production of cartilage matrix proteins. Freshly isolated primary bovine articular chondrocytes were encapsulated in three-dimensional alginate beads and maintained at 2% oxygen with media changes using media pre-equilibrated to 2% oxygen. Immunolocalization of HIF-1, was performed to verify hypoxic conditions. Sustained hypoxia resulted in an increase in proteoglycan synthesis after only 1 day, as measured by 35S-sulfate incorporation. This increase was maintained for the duration of the 17 day study. After 17 days of hypoxic culture, increases in total type II collagen and COL2A1 gene expression were probed by indirect immunofluorescence, type II collagen ELISA, and real-time qPCR; in addition, increased glycosaminoglycan deposition was observed as determined by chemical analysis. These studies show that sustained hypoxia enhances articular chondrocyte matrix synthesis and viability in three-dimensional alginate culture. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27: 793,799, 2009 [source]


    Mesenchymal stem cells derived from synovium, meniscus, anterior cruciate ligament, and articular chondrocytes share similar gene expression profiles

    JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 4 2009
    Yuko Segawa
    Abstract Mesenchymal stem cells (MSCs) can be obtained from various tissues, and contain common features. However, an increasing number of reports have described variant properties dependent of cell sources. We examined (1) whether MSCs existed in several intraarticular tissues, (2) whether gene expression profiles in intraarticular tissue MSCs closely resembled each other, and (3) whether identified genes were specific to intraarticular tissue MSCs. Human synovium, meniscus, intraarticular ligament, muscle, adipose tissue, and bone marrow were harvested, and colony-forming cells were analyzed. All these cells showed multipotentiality and surface markers typical of MSCs. Gene profiles of intraarticular tissue MSCs and chondrocytes were closer to each other than those of extraarticular tissues MSCs. Among three characteristic genes specific for intraarticular tissue MSCs, we focused on proline arginine-rich end leucine-rich repeat protein (PRELP). Higher expression of PRELP was confirmed in chondrocytes and intraarticular tissue MSCs among three elderly and three young donors. Synovium MSCs stably expressed PRELP, contrarily, bone marrow MSCs increased PRELP expression during in vitro chondrogenesis. In conclusion, MSCs could be isolated from various intraarticular tissues including meniscus and ligament, gene expression profiles of intraarticular tissue MSCs closely resembled each other, and the higher expression of PRELP was characteristic of intraarticular tissue MSCs. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27: 435,441, 2009 [source]


    Modulation of Na+ -H+ exchange isoforms NHE1 and NHE3 by insulin-like growth factor-1 in isolated bovine articular chondrocytes

    JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 11 2008
    Amanda L. Tattersall
    Abstract Incubation with serum modulates the transporters that regulate intracellular pH (pHi) in articular chondrocytes, upregulating acid extrusion by Na+ -H+ exchange (NHE). There is stimulation of NHE1, together with induction of NHE3 activity. These isoforms exhibit differential responses to components of mechanical load experienced by chondrocytes during joint loading. The identity of the component(s) of serum responsible is unknown. A possibility, however, is insulin-like growth factor-1 (IGF-1), present in normal cartilage and found at enhanced levels in osteoarthritic tissue. In the present study, the effects of IGF-1 on pHi regulation have been characterized using fluorescence measurements of bovine articular chondrocytes, and the sensitivity of pHi regulation to hyperosmotic shock and raised hydrostatic pressure determined. For cells isolated in the absence of IGF-1, pHi recovery following acidification was predominantly mediated by NHE1. Recovery was enhanced when cells were incubated for 18 h with 20 ng mL,1 IGF; this effect represented increased acid extrusion by NHE1, supplemented by NHE3 activity. NHE3 activity was not detected in IGF-1-treated cells that had been incubated with the protein synthesis inhibitor cycloheximide, although NHE1 activity was unaffected. In the absence of IGF-1, suspension in hyperosmotic solutions or raised hydrostatic pressure enhanced pHi recovery of acidified cells. This response was missing in cells incubated with IGF-1. Unresponsiveness to hyperosmotic shock represented inhibition of NHE3 activity, and was prevented using the protein kinase A inhibitor KT5720. For raised hydrostatic pressure, a decrease in NHE1 activity was responsible, and was prevented by the protein kinase C inhibitor chelerythrine. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 26:1428,1433, 2008 [source]


    Quantitative analysis of gene expression in human articular chondrocytes assigned for autologous implantation

    JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 6 2008
    Ariana Barli
    Abstract Autologous chondrocyte implantation (ACI) relies on the implantation of in vitro expanded cells. The aim was to study the dedifferentiation of human articular chondrocytes under different cultivating conditions [days 0,10 in the primary culture (P0); passages in a monolayer from P0 to P3; monolayer vs. alginate and monolayer vs. alginate/agarose hydrogels] using real-time PCR analysis. The relative gene expressions for collagen type I and II, aggrecan and versican were quantified and the corresponding differentiation indexes (Col2/Col1, Agr/Ver) were calculated. The values of both differentiation indexes decreased exponentially with time in the P0 monolayer culture, and continued with a significant decrease over the subsequent monolayer passages. On the contrary, the chondrocytes seeded in either of the hydrogels significantly increased the indexes compared to their parallel monolayer cultures. These results indicate that alginate and alginate/agarose hydrogels offer an appropriate environment for human articular chondrocytes to redifferentiate after being expanded in vitro. Therefore the three-dimensional (3D) hydrogel chondrocyte cultures present not only surgical, but also biological advantage over the classic suspension,periosteum chondrocyte implantation. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 26:847,853, 2008 [source]


    Regulation of embryonic endochondral ossification by Smurf2

    JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 5 2008
    Qiuqian Wu
    Abstract Smurf2 is an E3 ubiquitin ligase that targets TGF-, receptor activated Smad2 and Smad3 for the proteasome in primary articular chondrocytes, thus stimulating their hypertrophic differentiation. Comparatively, how Smurf2 functions in growth plate chondrocytes in a developing long bone is an open question. In this study, we measured the mRNA levels of endogenous Smurf2 and type X collagen in chick growth plate at different embryonic stages to monitor the correlation between the level of Smurf2 expression and chondrocyte maturational stage. We found that high levels of Smurf2 were associated with the differentiative and proliferative stages, while Smurf2 levels were thereafter decreased as the chondrocytes matured toward hypertrophy. In addition, we injected Smurf2 -RCAS into chick wing buds at HH stage 20,23 and examined how the ectopic overexpression of Smurf2 in condensing chondrogenic mesenchyme affects the subsequent process of chondrocyte maturation and ossification during embryonic development. Histological analysis showed that overexpression of Smurf2 in a developing wing bud accelerated chondrocyte maturation and endochondral ossification, which may result from a decrease in TGF-, signaling in the infected chondrocytes with Smurf2 -RCAS. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 26:704,712, 2008 [source]


    Differentiation of human mesenchymal stem cells and articular chondrocytes: Analysis of chondrogenic potential and expression pattern of differentiation-related transcription factors

    JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 2 2007
    Camilla Karlsson
    Abstract Mesenchymal stem cells (MSCs) are a candidate for replacing chondrocytes in cell-based repair of cartilage lesions. However, it has not been clarified if these cells can acquire the hyaline phenotype, and whether chondrocytes and MSCs show the same expression patterns of critical control genes in development. In order to study this, articular chondrocytes and iliac crest derived MSCs were allowed to differentiate in pellet mass cultures. Gene expression of markers for the cartilage phenotype, helix-loop-helix (HLH) transcription factors, and chondrogenic transcription factors were analyzed by real-time PCR. Matrix production was assayed using biochemical analysis for hydroxyproline, glycosaminoglycans, and immunohistochemistry for collagen types I and II. Significantly decreased expression of collagen type I was accompanied by increased expression of collagen types IIA and IIB during differentiation of chondrocytes, indicating differentiation towards a hyaline phenotype. Chondrogenesis in MSCs on the other hand resulted in up-regulation of collagen types I, IIA, IIB, and X, demonstrating differentiation towards cartilage of a mixed phenotype. Expression of HES1 increased significantly during chondrogenesis in chondrocytes while expression in MSCs was maintained at a low level. The HLH gene HES5 on the other hand was only detected in chondrocytes. Expression of ID1 decreased significantly in chondrocytes while the opposite was seen in MSCs. These findings suggest that chondrocytes and MSCs differentiated and formed different subtypes of cartilage, the hyaline and a mixed cartilage phenotype, respectively. Differentially regulated HLH genes indicated the possibility for HLH proteins in regulating chondrogenic differentiation. This information is important to understand the potential use of MSCs in cartilage repair. © 2006 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 25:152,163, 2007 [source]


    Expression of interleukin-1,, cyclooxygenase-2, and prostaglandin E2 in a rotator cuff tear in rabbits

    JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 1 2007
    Hiroshi Koshima
    Abstract We investigated the specific factors related to shoulder pain due to a rotator cuff tear using a model in rabbits. A rotator cuff tear was surgically created, and the expression of interleukin-1, (IL-1,), prostaglandin E2 (PGE2), and cyclooxygenase-2 (COX-2) was analyzed. In the supernatant of the tissue culture of the torn tendon, IL-1, production was detected. The amount of IL-1, was highest 1 day after injury, and then decreased gradually to 21 days. PGE2, the mediator of pain and the product of COX-2, was also detected in the supernatant of the tissue culture. The production of PGE2 significantly increased to 7 days after injury, and then decreased to 21 days. RT-PCR analysis confirmed the mRNA expression of IL-1, and COX-2 in the torn tendon. Immunohistochemical study demonstrated that cells in the tendon stump were immunopositive for IL-1, and COX-2. Furthermore, in the affected joint, articular chondrocytes in the remote area from the tear expressed COX-2 strongly. When the rotator cuff is torn, IL-1, is produced in the torn tendon, and stimulates the expression of COX-2 in not only the torn tendon but also in articular chondrocytes. The COX-2 then produces PGE2, which would mediate shoulder pain. © 2006 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 25:92,97, 2007 [source]


    Type II collagen modulates the composition of extracellular matrix synthesized by articular chondrocytes

    JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 2 2003
    Wen-Ning Qi
    Abstract The articular cartilage extracellular matrix (ECM) interfaces with chondrocytes and influences many biological processes important to cartilage homeostasis and repair. The alginate bead culture system can be viewed as a model of cartilage repair in which the chondrocyte attempts to recreate the pericellular matrix while maintaining a differentiated phenotype. The purpose of this study was to evaluate the alteration in epitopes of proteoglycan and tenascin synthesized by chondrocytes in the presence of exogenous extracellular type II collagen. We evaluated the effects on four biomarkers associated with the creation of the denovo matrix using ELISA and immunohistochemistry: keratan sulfate epitope (5D4), 3B3(,) neoepitope of chondroitin-6- sulfate, 3B3(+) chondroitinase-generatedepitope of chondroitin-6-sulfate, and tenascin-C expression. TGF-,1 stimulated the production of 3B3(+), 5D4, and tenascin-C in a dose-dependent manner and decreased 3B3(,) levels. Following the addition of exogenous type II collagen, 3B3(,) increased and tenascin-C decreased but did not change the direction of TGF-,1 effects. In contrast, 5D4 expression decreased in the presence of collagen II as TGF-,1 increased to 10 ng/ml. Interestingly, the amount of 3B3(+) epitope was not affected by the incorporation of type II collagen. Immunohistochemistry found there was no significant difference in distribution of these biomarkers in the presence and absence of extracellular type II collagen incorporation. These results elucidate the subtle biochemical differences in ECM synthesized by chondrocytes in the presence of type II collagen and further characterize the role played by ECM in the TGF-,1 regulation of the articular cartilage physiology. © 2002 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved. [source]


    Temporal effects of cell adhesion on mechanical characteristics of the single chondrocyte

    JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 1 2003
    Wei Huang
    Abstract Cell adhesion to material surfaces is a fundamental phenomenon in tissue response to implanted devices, and an important consideration in tissue engineering. For example, elucidation of phenomena associated with adhesion of chondrocytes to biomaterials is critical in addressing the difficult problem of articular cartilage regeneration. The first objective of this study was to measure the mechanical adhesiveness characteristics of individual rabbit articular chondrocytes as a function of seeding time to provide further understanding of the cell adhesion process. The second objective was to quantify the force required to separate the plasma membrane from the underlying cytoskeleton as a function of seeding time. After culturing chondrocytes on glass coverslips for 1, 2, 4, 6 h, two biomechanical tests were performed on single chondrocytes: (i) mechanical adhesiveness measurement by the cytodetacher; and (ii) plasma membrane tether formation force measurement by optical tweezers. Cell mechanical adhesiveness increased from 231 ± 149 Pa at 1 h to 1085 ± 211 Pa at 6 h. The cell contact area with the substrata increased from 161 ± 52 ,m2 at 1 h to 369 ± 105 ,m2 at 6 h. The tether formation force increased from 232 ± 23 pN at 1 h to 591 ± 17 pN at 6 h. Moreover, fluorescence staining by rhodamine-phalloidin demonstrated the process of actin spreading within the cytoskeleton from 0.5 to 6 h and allowed for measurement of cell height which was found to decrease from 12.3 ± 2.9 ,m at 0.5 h to 6.2 ± 0.9 ,m at 6 h. © 2002 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved. [source]


    Quantification of expression levels of cellular differentiation markers does not support a general shift in the cellular phenotype of osteoarthritic chondrocytes

    JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 1 2003
    Pia Margarethe Gebhard
    Abstract Many studies have shown increased anabolic activity in osteoarthritic cartilage and have suggested changes in the cellular phenotypes of articular chondrocytes. Most of these studies relied on non-quantitative technologies, which did not allow the estimation of the relative importance of the different differentiation phenomena. In the present study, we developed and used quantitative PCR assays for collagen types I, II(total), IIA, III, and X as marker genes indicating cellular synthetic activity (collagen type II) as well as differentiation pattern of chondrocytes (collagen types I, IIA, III, and X) and quantified these genes in normal, early degenerative, and late stage osteoarthritic cartilage in parallel. At first sight, our results confirmed previously published data showing hardly any expression of collagen genes in normal and significantly enhanced expression in osteoarthritic cartilage. This included collagen types II, III, and IIA, but also collagen types I(,1) and X. However, if one considers the ratios of the various markers of chondrocytic differentiation in comparison to collagen type II, the main synthetic product of differentiated chondrocytes, no shift in the cellular phenotype was detectable. In fact, expression ratios remained constant or were even decreased in osteoarthritic cartilage. Our results confirm that normal adult human articular chondrocytes display hardly any expression activity of the collagen types investigated, whereas osteoarthritic chondrocytes show very increased synthetic activity. The largely unchanged ratios of collagen subtypes investigated indicate that no general shift in the cellular phenotype does occur in osteoarthritic cartilage as suggested by previous investigations. © 2002 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved. [source]


    Performance of new gellan gum hydrogels combined with human articular chondrocytes for cartilage regeneration when subcutaneously implanted in nude mice

    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, Issue 7 2009
    J. T. Oliveira
    Abstract Gellan gum is a polysaccharide that has been recently proposed by our group for cartilage tissue-engineering applications. It is commonly used in the food and pharmaceutical industry and has the ability to form stable gels without the use of harsh reagents. Gellan gum can function as a minimally invasive injectable system, gelling inside the body in situ under physiological conditions and efficiently adapting to the defect site. In this work, gellan gum hydrogels were combined with human articular chondrocytes (hACs) and were subcutaneously implanted in nude mice for 4 weeks. The implants were collected for histological (haematoxylin and eosin and Alcian blue staining), biochemical [dimethylmethylene blue (GAG) assay], molecular (real-time PCR analyses for collagen types I, II and X, aggrecan) and immunological analyses (immunolocalization of collagen types I and II). The results showed a homogeneous cell distribution and the typical round-shaped morphology of the chondrocytes within the matrix upon implantation. Proteoglycans synthesis was detected by Alcian blue staining and a statistically significant increase of proteoglycans content was measured with the GAG assay quantified from 1 to 4 weeks of implantation. Real-time PCR analyses showed a statistically significant upregulation of collagen type II and aggrecan levels in the same periods. The immunological assays suggest deposition of collagen type II along with some collagen type I. The overall data shows that gellan gum hydrogels adequately support the growth and ECM deposition of human articular chondrocytes when implanted subcutaneously in nude mice. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    Effect of cell seeding concentration on the quality of tissue engineered constructs loaded with adult human articular chondrocytes

    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, Issue 1 2008
    Sebastian Concaro
    Abstract Many aspects of the process of in vitro differentiation of chondrocytes in three-dimensional (3D) scaffolds need to be further investigated. Chitosan scaffolds were produced by freeze-drying 3% w/v 90% DDA chitosan gels. The effect of the cell seeding concentration was evaluated by culturing human adult chondrocytes in chitosan scaffolds After the first passage, cells were seeded into chitosan scaffolds with a diameter of 8 mm. The final cell seeding concentration per cm3 of chitosan scaffold was: Group A, 3 × 106; Group B, 6 × 106; Group C, 12 × 106; and Group D, 25 × 106 cells. After 14 and 28 days in 3D culture, the constructs were assesed for collagen, glucosaminoglycans and DNA content. The mechanical properties of the constructs were determined using a dynamic oscillatory shear test. The histological aspect of the constructs was evaluated using the Bern score. The collagen and GAG concentration increased, varying the cell seeding concentration. There was a significant increase in proteoglycan and hydroxyproline production between groups C and D. The sulphated GAG content increased significantly in the group D as compared to the other groups. The mechanical properties of the different constructs increased over time, from 9.6 G,/kPa at 14 days of 3D culture to 14.6 G,/kPa at 28 days under the same culture conditions. In this study we were able to determine that concentrations of 12,25 million cells/cm2 are needed to increase the matrix production and mechanical properties of human adult chondrocytes under static conditions. Copyright © 2008 John Wiley & Sons, Ltd. [source]


    Local stimulation of articular cartilage repair by transplantation of encapsulated chondrocytes overexpressing human fibroblast growth factor 2 (FGF-2) in vivo,

    THE JOURNAL OF GENE MEDICINE, Issue 1 2006
    Gunter Kaul
    Abstract Background Defects of articular cartilage are an unsolved problem in orthopaedics. In the present study, we tested the hypothesis that gene transfer of human fibroblast growth factor 2 (FGF-2) via transplantation of encapsulated genetically modified articular chondrocytes stimulates chondrogenesis in cartilage defects in vivo. Methods Lapine articular chondrocytes overexpressing a lacZ or a human FGF-2 gene sequence were encapsulated in alginate and further characterized. The resulting lacZ or FGF-2 spheres were applied to cartilage defects in the knee joints of rabbits. In vivo, cartilage repair was assessed qualitatively and quantitatively at 3 and 14 weeks after implantation. Results In vitro, bioactive FGF-2 was secreted, leading to a significant increase in the cell numbers in FGF-2 spheres. In vivo, FGF-2 continued to be expressed for at least 3 weeks without leading to differences in FGF-2 concentrations in the synovial fluid between treatment groups. Histological analysis revealed no adverse pathologic effects on the synovial membrane at any time point. FGF-2 gene transfer enhanced type II collagen expression and individual parameters of chondrogenesis, such as the cell morphology and architecture of the new tissue. Overall articular cartilage repair was significantly improved at both time points in vivo. Conclusions The data suggest that localized overexpression of FGF-2 enhances the repair of cartilage defects via stimulation of chondrogenesis, without adverse effects on the synovial membrane. These results may lead to the development of safe gene-based therapies for human articular cartilage defects. Copyright © 2005 John Wiley & Sons, Ltd. [source]


    Overexpression of human fibroblast growth factor 2 stimulates cell proliferation in an ex vivo model of articular chondrocyte transplantation,

    THE JOURNAL OF GENE MEDICINE, Issue 2 2004
    Henning Madry
    Abstract Background Genetically engineered chondrocytes could be used to enhance cartilage repair. Fibroblast growth factor 2 (FGF-2) is a mitogen for chondrocytes and may be a candidate for gene transfer approaches to stimulate chondrocyte proliferation. In the present study, we tested the hypothesis that human FGF-2 (hFGF-2) gene transfer into articular chondrocytes modulates cell proliferation in an ex vivo model of chondrocyte transplantation. Methods Transfection of articular chondrocytes with an expression plasmid vector carrying the cDNA for hFGF-2 under the control of the cytomegalovirus promoter/enhancer mediated transgene expression and synthesis of biologically relevant amounts of the recombinant hFGF-2 protein. Articular chondrocytes transfected with the Escherichia coli ,-galactosidase (lacZ) gene or a hFGF-2 cDNA were transplanted onto the surface of articular cartilage explants. Results The tissue formed by the chondrocytes expressing hFGF-2 was thicker and contained more cells than control cultures. Quantitative analysis of [3H]thymidine and [35S]sulfate incorporation in composite cultures revealed that hFGF-2 transfection stimulated mitogenic activity in the new tissue but did not augment matrix glycosaminoglycan synthesis. Conclusions These data support the concept that chondrocytes overexpressing a hFGF-2 cDNA selectively modulate cell proliferation in an ex vivo model of chondrocyte transplantation. These results suggest that therapeutic hFGF-2 gene transfer may be applicable for the treatment of articular cartilage disorders, such as traumatic defects in which cellular repopulation is a therapeutic goal. Copyright © 2004 John Wiley & Sons, Ltd. [source]


    A voltage-dependent K+ current contributes to membrane potential of acutely isolated canine articular chondrocytes

    THE JOURNAL OF PHYSIOLOGY, Issue 1 2004
    Jim R. Wilson
    The electrophysiological properties of acutely isolated canine articular chondrocytes have been characterized using patch-clamp methods. The ,steady-state' current,voltage relationship (I,V) of single chondrocytes over the range of potentials from ,100 to +40 mV was highly non-linear, showing strong outward rectification positive to the zero-current potential. Currents activated at membrane potentials negative to ,50 mV were time independent, and the I,V from ,100 to ,60 mV was linear, corresponding to an apparent input resistance of 9.3 ± 1.4 G, (n= 23). The outwardly rectifying current was sensitive to the K+ channel blocking ion tetraethylammonium (TEA), which had a 50% blocking concentration of 0.66 mm (at +50 mV). The ,TEA-sensitive' component of the outwardly rectifying current had time- and membrane potential-dependent properties, activated near ,45 mV and was half-activated at ,25 mV. The reversal potential of the ,TEA-sensitive' current with external K+ concentration of 5 mm and internal concentration of 145 mm, was ,84 mV, indicating that the current was primarily carried by K+ ions. The resting membrane potential of isolated chondrocytes (,38.1 ± 1.4 mV; n= 19) was depolarized by 14.8 ± 0.9 mV by 25 mm TEA, which completely blocked the K+ current of these cells. These data suggest that this voltage-sensitive K+ channel has an important role in regulating the membrane potential of canine articular chondrocytes. [source]


    Chondroprotective role of the osmotically sensitive ion channel transient receptor potential vanilloid 4: Age- and sex-dependent progression of osteoarthritis in Trpv4 -deficient mice

    ARTHRITIS & RHEUMATISM, Issue 10 2010
    Andrea L. Clark
    Objective Mechanical loading significantly influences the physiology and pathology of articular cartilage, although the mechanisms of mechanical signal transduction are not fully understood. Transient receptor potential vanilloid 4 (TRPV4) is a Ca++ -permeable ion channel that is highly expressed by articular chondrocytes and can be gated by osmotic and mechanical stimuli. The goal of this study was to determine the role of Trpv4 in the structure of the mouse knee joint and to determine whether Trpv4,/, mice exhibit altered Ca++ signaling in response to osmotic challenge. Methods Knee joints of Trpv4,/, mice were examined histologically and by microfocal computed tomography for osteoarthritic changes and bone structure at ages 4, 6, 9, and 12 months. Fluorescence imaging was used to quantify chondrocytic Ca++ signaling within intact femoral cartilage in response to osmotic stimuli. Results Deletion of Trpv4 resulted in severe osteoarthritic changes, including cartilage fibrillation, eburnation, and loss of proteoglycans, that were dependent on age and male sex. Subchondral bone volume and calcified meniscal volume were greatly increased, again in male mice. Chondrocytes from Trpv4+/+ mice demonstrated significant Ca++ responses to hypo-osmotic stress but not to hyperosmotic stress. The response to hypo-osmotic stress or to the TRPV4 agonist 4,-phorbol 12,13-didecanoate was eliminated in Trpv4,/, mice. Conclusion Deletion of Trpv4 leads to a lack of osmotically induced Ca++ signaling in articular chondrocytes, accompanied by progressive, sex-dependent increases in bone density and osteoarthritic joint degeneration. These findings suggest a critical role for TRPV4-mediated Ca++ signaling in the maintenance of joint health and normal skeletal structure. [source]