Performance Traits (performance + trait)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Genetic parameters for dry matter, energy and protein intake, and their relationships with performance and carcass traits in Japanese Black cattle

JOURNAL OF ANIMAL BREEDING AND GENETICS, Issue 1 2009
M.A. Hoque
Summary Genetic parameters for feed intake and performance traits of 514 bulls and carcass traits of 22 099 of their progeny, and the relationships of measures of feed intake with performance and carcass traits were estimated. Feed intake traits were dry matter intake (DMI), concentrate intake (CONI), roughage intake, ratio of roughage intake to DMI, metabolizable energy intake (MEI) and digestible crude protein intake (DCPI). Performance traits included daily gain, metabolic weight, live weight at the end of test, dry matter conversion ratio and residual feed intake. Progeny carcass traits were carcass weight, percentage of meat yield, rib eye area (REA), subcutaneous fat, marbling score, meat colour (MCS), fat colour (FCS) and meat quality grade. All the feed intake and performance traits were moderately heritable. The heritabilities for REA and MCS were moderate, and that for FCS was low, while those for the other carcass traits were high. Selection against DMI, CONI and DCPI would reduce excessive intake of feed, but would have undesirable effects on growth and most of the carcass traits. Selection against MEI would lead to improvements in feed efficiency and growth traits. Selection against DCPI would also improve feed efficiency; however, responses in growth traits would decrease. Results indicate that selection against MEI might be better than any other measures of feed intake to improve feed efficiency with simultaneous improvement in growth and most of the carcass traits. [source]


WATER STRESS ALTERS THE GENETIC ARCHITECTURE OF FUNCTIONAL TRAITS ASSOCIATED WITH DROUGHT ADAPTATION IN AVENA BARBATA

EVOLUTION, Issue 3 2009
Mark E. Sherrard
Environmental stress can alter genetic variation and covariation underlying functional traits, and thus affect adaptive evolution in response to natural selection. However, the genetic basis of functional traits is rarely examined in contrasting resource environments, and consequently, there is no consensus regarding whether environmental stress constrains or facilitates adaptive evolution. We tested whether resource availability affects genetic variation for and covariation among seven physiological traits and seven morphological/performance traits by growing the annual grass Avena barbata in dry and well-watered treatments. We found that differences in the overall genetic variance,covariance (G) matrix between environments were driven by physiological traits rather than morphology and performance traits. More physiological traits were heritable in the dry treatment than the well-watered treatment and many of the genetic correlations among physiological traits were environment dependent. In contrast, genetic variation and covariation among the morphological and performance traits did not differ across treatments. Furthermore, genetic correlations between physiology and performance were stronger in the dry treatment, which contributed to differences in the overall G -matrix. Our results therefore suggest that physiological adaptation would be constrained by low heritable variation in resource-rich environments, but facilitated by higher heritable variation and stronger genetic correlations with performance traits in resource-poor environments. [source]


A comparison of invasive and non-invasive dayflowers (Commelinaceae) across experimental nutrient and water gradients

DIVERSITY AND DISTRIBUTIONS, Issue 5-6 2004
Jean H. Burns
ABSTRACT Little is known about the traits and mechanisms that determine whether or not a species will be invasive. Invasive species are those that establish and spread after being introduced to a novel habitat. A number of previous studies have attempted to correlate specific plant traits with invasiveness. However, many such studies may be flawed because they fail to account for shared evolutionary history or fail to measure performance directly. It is also clear that performance is context dependent. Thus, an approach that corrects for relatedness and incorporates multiple experimental conditions will provide additional information on performance traits of invasive species. I use this approach with two or three pairs of invasive and closely related non-invasive species of Commelinaceae grown over experimental gradients of nutrient and water availability. Invasive species have been introduced, established, and spread outside their native range; non-invasive species have been introduced, possibly (but not necessarily) established, but are not known to have spread outside their native range. The invasive species had higher relative growth rates (RGR) than non-invasive congeners at high nutrient availabilities, but did not differ from non-invasive species at low nutrient availabilities. This is consistent with a strategy where these particular invasive species are able to rapidly use available resources. Relative growth rates were also higher for two out of three invasive species across a water availability gradient, but RGR did not differ in plasticity between the invasive and non-invasive species. This suggests that nutrient addition, but not changes in water availability, might favour invasion of dayflowers. This approach is novel in comparing multiple pairs of invasive and non-invasive congeners across multiple experimental conditions and allows evaluation of the robustness of performance differences. It also controls for some of the effects of relatedness that might confound multispecies comparisons. [source]


Genetic Allee effects on performance, plasticity and developmental stability in a clonal plant

ECOLOGY LETTERS, Issue 6 2000
M. Fischer
Negative effects of small population size on fitness, so-called Allee effects, may threaten population persistence even in intact habitat remnants. We studied genotypes of 14 isolated populations of the clonal plant Ranunculus reptans, for which molecular genetic (RAPD-) variability is higher for large than for small populations. In a competition-free greenhouse environment vegetative offspring of genotypes from large populations produced more rosettes and flowers, indicating higher fitness. Within-genotype coefficients of variation in performance traits, indicating developmental instability, were lower for genotypes from populations with higher RAPD-variability. In competition with a taller grass, we found relative reduction in leaf length less pronounced for plants from large populations, suggesting higher adaptive plasticity. Our experimental study of a plant with predominantly vegetative reproduction suggests, that negative genetic effects of recent habitat fragmentation, which so far rather were expected in plants with frequent sexual reproduction, are more severe and more common than previously acknowledged. [source]


WATER STRESS ALTERS THE GENETIC ARCHITECTURE OF FUNCTIONAL TRAITS ASSOCIATED WITH DROUGHT ADAPTATION IN AVENA BARBATA

EVOLUTION, Issue 3 2009
Mark E. Sherrard
Environmental stress can alter genetic variation and covariation underlying functional traits, and thus affect adaptive evolution in response to natural selection. However, the genetic basis of functional traits is rarely examined in contrasting resource environments, and consequently, there is no consensus regarding whether environmental stress constrains or facilitates adaptive evolution. We tested whether resource availability affects genetic variation for and covariation among seven physiological traits and seven morphological/performance traits by growing the annual grass Avena barbata in dry and well-watered treatments. We found that differences in the overall genetic variance,covariance (G) matrix between environments were driven by physiological traits rather than morphology and performance traits. More physiological traits were heritable in the dry treatment than the well-watered treatment and many of the genetic correlations among physiological traits were environment dependent. In contrast, genetic variation and covariation among the morphological and performance traits did not differ across treatments. Furthermore, genetic correlations between physiology and performance were stronger in the dry treatment, which contributed to differences in the overall G -matrix. Our results therefore suggest that physiological adaptation would be constrained by low heritable variation in resource-rich environments, but facilitated by higher heritable variation and stronger genetic correlations with performance traits in resource-poor environments. [source]


Genetic parameters for dry matter, energy and protein intake, and their relationships with performance and carcass traits in Japanese Black cattle

JOURNAL OF ANIMAL BREEDING AND GENETICS, Issue 1 2009
M.A. Hoque
Summary Genetic parameters for feed intake and performance traits of 514 bulls and carcass traits of 22 099 of their progeny, and the relationships of measures of feed intake with performance and carcass traits were estimated. Feed intake traits were dry matter intake (DMI), concentrate intake (CONI), roughage intake, ratio of roughage intake to DMI, metabolizable energy intake (MEI) and digestible crude protein intake (DCPI). Performance traits included daily gain, metabolic weight, live weight at the end of test, dry matter conversion ratio and residual feed intake. Progeny carcass traits were carcass weight, percentage of meat yield, rib eye area (REA), subcutaneous fat, marbling score, meat colour (MCS), fat colour (FCS) and meat quality grade. All the feed intake and performance traits were moderately heritable. The heritabilities for REA and MCS were moderate, and that for FCS was low, while those for the other carcass traits were high. Selection against DMI, CONI and DCPI would reduce excessive intake of feed, but would have undesirable effects on growth and most of the carcass traits. Selection against MEI would lead to improvements in feed efficiency and growth traits. Selection against DCPI would also improve feed efficiency; however, responses in growth traits would decrease. Results indicate that selection against MEI might be better than any other measures of feed intake to improve feed efficiency with simultaneous improvement in growth and most of the carcass traits. [source]


Association of a melanocortin 4 receptor (MC4R) polymorphism with performance traits in Lithuanian White pigs

JOURNAL OF ANIMAL BREEDING AND GENETICS, Issue 1 2006
R. Jokubka
Summary The melanocortin 4 receptor is expressed in virtually all brain regions of mammals and plays an important role in energy homeostasis. Polymorphisms in this gene may thus be related to growth and obesity. In pigs, a non-synonymous polymorphic site was described (Asp298Asn) and demonstrated to affect cAMP production and to alter adenylyl cyclase signalling. Association studies revealed significant linkage of this mutation with production trait in pigs. In this study, 207 Lithuanian White pigs were genotyped at the MC4R locus and analysed on relationships between genotype and breeding values for several performance traits. The observed allele and genotype frequencies did not deviate significantly from Hardy,Weinberg equilibrium (wildtype allele 0.59; mutant allele 0.41) and are comparable with those described in other Large White populations. The mutant Asn298 allele of the MC4R gene was significantly associated with increased test daily gain, higher lean meat percentage and lower backfat thickness. There was a trend towards an improved feed conversion ratio (p = 0.065) in animals with the mutant allele whereas no significant effect was found on lifetime daily gain. These results indicate that the MC4R polymorphism should be integrated in selection programmes in the Lithuanian White to improve carcass composition. [source]


Growth properties of 16 non-pioneer rain forest tree species differing in sapling architecture

JOURNAL OF ECOLOGY, Issue 5 2009
Masahiro Aiba
Summary 1.,Sapling architecture may be an important determinant of performance traits, such as light interception and height growth, but few studies have examined the direct relationship between sapling architecture and growth properties. To study this relationship and the potential for strategic diversification, we analysed the growth properties in saplings of 16 Bornean tree species that differ in architecture. 2.,Annual net production significantly differed amongst species and was positively correlated with total above-ground dry mass, total leaf area and crown area. In contrast, the net assimilation rate was weakly but negatively correlated with these architectural traits. The net assimilation rate was virtually independent of leaf size and specific leaf area. Relationships between sapling architecture and relative growth rate in mass were weak. 3.,The relative growth rate in height did not significantly differ amongst species, although their total dry mass, a proxy for extension cost, varied fourfold across species for a given sapling height. This is because the proportional increase in net production with total dry mass, which is based on a larger total leaf area and larger crown area, cancelled out the higher extension cost. All architectural traits, including leaf size and specific leaf area, failed to predict height growth rate. 4.,Synthesis. Relative growth rates in both mass and height were relatively independent of sapling architecture. Of the architectural traits, leaf size, specific leaf area and stem diameter were poor predictors of growth properties, even though they were considered functionally important. These results clearly reject the classic hypothesis that architectural variation leads to a trade-off between height growth and light interception, at least for the species that are under shaded conditions. However, functional variation ranging from species with high net production and low net assimilation rates (in saplings of equal height) to species with the opposite traits, which was accompanied by architectural variation in total dry mass and related size factors, may be important for the coexistence of these tree species. The possibility that small total dry mass may be advantageous in height growth under well-lit conditions should be examined in future studies. [source]


A quantitative genetic analysis of leaf beetle larval performance on two natural hosts: including a mixed diet

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 1 2000
Ballabeni
Published quantitative genetic studies of larval performance on different host plants have always compared performance on one host species or genotype vs. performance on another species or genotype. The fact that some insects may feed on more than one plant species during their development has been neglected. We executed a quantitative genetic analysis of performance with larvae of the leaf beetle Oreinaelongata, raised on each of two sympatric host plants or on a mixture of them. Growth rate was higher for larvae feeding on Adenostylesalliariae, intermediate on the mixed diet and lowest on Cirsium spinosissimum. Development time was shortest on A. alliariae, intermediate on mixed diet and longest on C. spinosissimum. Survival was higher on the mixed diet than on both pure hosts. Genetic variation was present for all three performance traits but a genotype by host interaction was found only for growth rate. However, the reaction norms for growth rate are unlikely to evolve towards an optimal shape because of a lack of heritability of growth rate in each single environment. We found no negative genetic correlations for performance traits among hosts. Therefore, our results do not support a hypothesis predicting the existence of between-host trade-offs in performance when both hosts are sympatric with an insect population. We conclude that the evolution of host specialized genotypes is unlikely in the study population. [source]


Effects of dietary humate supplementation to broilers on performance, slaughter, carcass and meat colour

JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 7 2008
Dr Nurinisa Esenbu
Abstract BACKGROUND: This experiment was designed to examine the effect of dietary humate supplementation primarily on pH and colour parameters of carcasses, breast fillets and drumsticks and, secondarily on performance and carcass characteristics in broilers. RESULTS: A total of 240 male broiler chicks (Ross-308) were randomly allocated to four dietary treatments varying in supplemental humate level (0, 0.1, 0.2 and 0.3% for H0, H1, H2 and H3). Dietary humate supplementation did not affect performance traits and slaughter, hot carcass weights and yields. Carcass-related variables (pH, L*, a*, b*, H* and C*) were responsive to the dietary treatments. The L*, a*, b*, and C* values for drumstick muscles were higher than those for breast muscles. Except for the L* value, meat colour parameters changed due to packaging. The a* value was higher and b* value was lower for vacuum packaged breast and drumsticks than for those aerobic packaged. Storage period affected colour parameters; while L*, b*, H* and C* values were higher for drumstick skin than for drumstick meat; the a* value was greater in drumstick meat than in skin. CONCLUSION: pH and colour parameters of carcasses, breast fillets and drumsticks of broilers were improved by dietary humate supplementation. However, responses of broiler performance and slaughter and carcass characteristics were minimal. Copyright © 2008 Society of Chemical Industry [source]


Climate change and the characterization, breeding and conservation of animal genetic resources

ANIMAL GENETICS, Issue 2010
Irene Hoffmann
Summary Livestock production both contributes to and is affected by climate change. In addition to the physiological effects of higher temperatures on individual animals, the consequences of climate change are likely to include increased risk that geographically restricted rare breed populations will be badly affected by disturbances. Indirect effects may be felt via ecosystem changes that alter the distribution of animal diseases or affect the supply of feed. Breeding goals may have to be adjusted to account for higher temperatures, lower quality diets and greater disease challenge. Species and breeds that are well adapted to such conditions may become more widely used. Climate change mitigation strategies, in combination with ever increasing demand for food, may also have an impact on breed and species utilization, driving a shift towards monogastrics and breeds that are efficient converters of feed into meat, milk and eggs. This may lead to the neglect of the adaptation potential of local breeds in developing countries. Given the potential for significant future changes in production conditions and in the objectives of livestock production, it is essential that the value provided by animal genetic diversity is secured. This requires better characterization of breeds, production environments and associated knowledge; the compilation of more complete breed inventories; improved mechanisms to monitor and respond to threats to genetic diversity; more effective in situ and ex situ conservation measures; genetic improvement programmes targeting adaptive traits in high-output and performance traits in locally adapted breeds; increased support for developing countries in their management of animal genetic resources; and wider access to genetic resources and associated knowledge. [source]


Quantitative trait loci for performance traits in a broiler × layer cross

ANIMAL GENETICS, Issue 2 2009
M. Ambo
Summary An F2 resource population, derived from a broiler × layer cross, was used to map quantitative trait loci (QTL) for body weights at days 1, 35 and 41, weight gain, feed intake, feed efficiency from 35 to 41 days and intestinal length. Up to 577 F2 chickens were genotyped with 103 genetic markers covering 21 linkage groups. A preliminary QTL mapping report using this same population focused exclusively on GGA1. Regression methods were applied to line-cross and half-sib models for QTL interval mapping. Under the line-cross model, eight QTL were detected for body weight at 35 days (GGA2, 3 and 4), body weight at 41 days (GGA2, 3, 4 and 10) and intestine length (GGA4). Under the half-sib model, using sire as common parent, five QTL were detected for body weight at day 1 (GGA3 and 18), body weight at 35 days (GGA2 and 3) and body weight at 41 days (GGA3). When dam was used as common parent, seven QTL were mapped for body weight at day 1 (GGA2), body weight at day 35 (GGA2, 3 and 4) and body weight at day 41 (GGA2, 3 and 4). Growth differences in chicken lines appear to be controlled by a chronological change in a limited number of chromosomal regions. [source]


Variation in ecophysiology and carbon economy of invasive and native woody vines of riparian zones in south-eastern Queensland

AUSTRAL ECOLOGY, Issue 6 2010
OLUSEGUN O. OSUNKOYA
Abstract Exotic and invasive woody vines are major environmental weeds of riparian areas, rainforest communities and remnant natural vegetation in coastal eastern Australia, where they smother standing vegetation, including large trees, and cause canopy collapse. We investigated, through glasshouse resource manipulative experiments, the ecophysiological traits that might facilitate faster growth, better resource acquisition and/or utilization and thus dominance of four exotic and invasive vines of South East Queensland, Australia, compared with their native counterparts. Relative growth rate was not significantly different between the two groups but water use efficiency (WUE) was higher in the native species while the converse was observed for light use efficiency (quantum efficiency, AQE) and maximum photosynthesis on a mass basis (). The invasive species, as a group, also exhibited higher respiration load, higher light compensation point and higher specific leaf area. There were stronger correlations of leaf traits and greater structural (but not physiological) plasticity in invasive species than in their native counterparts. The scaling coefficients of resource use efficiencies (WUE, AQE and respiration efficiency) as well as those of fitness (biomass accumulated) versus many of the performance traits examined did not differ between the two species-origin groups, but there were indications of significant shifts in elevation (intercept values) and shifts along common slopes in many of these relationships , signalling differences in carbon economy (revenue returned per unit energy invested) and/or resource usage. Using ordination and based on 14 ecophysiological attributes, a fair level of separation between the two groups was achieved (51.5% explanatory power), with AQE, light compensation point, respiration load, WUE, specific leaf area and leaf area ratio, in decreasing order, being the main drivers. This study suggests similarity in trait plasticity, especially for physiological traits, but there appear to be fundamental differences in carbon economy and resource conservation between native and invasive vine species. [source]


Local adaptation in four Iris species tested in a common-garden experiment

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 2 2009
MICHAEL DORMAN
Local adaptation is a commonly observed result of natural selection acting in heterogeneous environment. Common-garden experiments are a method of detecting local adaptation, as well as studying phenotypic plasticity and gradients of traits. The present study aimed to analyse reaction norms of four closely-related Iris species of section Oncocyclus and to identify a role of environmentally-specific natural selection in their plastic responses. The plant vegetative and phenological, as well as performance traits were measured in a full factorial common-garden experiment with three levels of water amount and three soil types. We found a significant effect of species identity on all traits measured. Water amount and soil type affected many of the traits, but soil type did not affect the performance. There was no significant difference in the effect of water amount and soil type on performance as reflected by rhizome growth; in other words, there was no significant genotype × environment interaction for performance. Plasticity levels and directions of response were also similar among the species. We conclude that phenotypic differences among species are of genetic origin, although no adaptive value was demonstrated for them at the time and life-stages ,frame' of this experiment. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society 2009, 98, 267,277. [source]


Wing shape variation in the medium ground finch (Geospiza fortis): an ecomorphological approach

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 1 2009
BIEKE VANHOOYDONCK
Wing design in birds is subject to a suite of interacting selective pressures. As different performance traits are favoured in different ecological settings, a tight link is generally expected between variation in wing morphology and variation in ecological parameters. In the present study, we document aspects of variation in wing morphology in the medium ground finch (Geospiza fortis) on Isla Santa Cruz in the Galápagos. We compare variation in body size, simple morphometric traits (body mass, last primary length, wing length, wing chord, and wing area) and functional traits (wing loading, aspect ratio and wing pointedness) across years, among populations, and between sexes. Functional traits are found to covary across years with differences in climatic conditions, and to covary among populations with differences in habitat structure. In dry years and arid locations, wing aspect ratios are highest and wings are more pointed, consistent with a need for a low cost of transport. In wet years and cluttered habitats, wing loading is lowest and wings are more rounded, suggesting enhanced capabilities for manoeuvrability. Sexes differ in wing loading, with males having lower wing loadings than females. Superior manoeverability might be favoured in males for efficient territory maintenance. Lastly, in contrast to functional traits, we found little consistent inter-annual or inter-site variation in simple morphometric traits. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98, 129,138. [source]


Resistance to Plant Invasion?

BIOTROPICA, Issue 2 2010
A Native Specialist Herbivore Shows Preference for, Higher Fitness on an Introduced Host
ABSTRACT The response of native herbivores to the introduction of a new plant to the community has important implications for plant invasion. Under the Enemy Release Hypothesis introduced species become invasive because of reduced enemy control in the new range, while under the New Association Hypothesis introduced species lack effective defenses against native enemies because they do not share an evolutionary history. I tested the response of a native South-American specialist herbivore Utetheisa ornatrix (Lepidoptera: Arctiidae) to a native (Crotalaria incana) and an introduced host (Crotalaria pallida) (Fabaceae: Papilionoideae). I compared seed predation rates between the two hosts in the field, and I tested preference and performance traits with common garden experiments. Utetheisa ornatrix caused much higher seed predation rates on the introduced host than on the native host. Females also preferred to oviposit on the introduced over the native host. Additionally, larvae feeding on the introduced host had higher fitness (higher pupal weight) than larvae feeding on the native host. I discuss how the response of this specialist herbivore to this introduced host plant contradicts the predictions of the Enemy Release Hypothesis and support the New Association Hypothesis. This study shows that the New Association Hypothesis can also be true for specialist herbivores. Abstract in Portuguese is available at http://www.blackwell-synergy.com/loi/btp [source]