Home About us Contact | |||
Perfusion Single Photon Emission (perfusion + single_photon_emission)
Selected AbstractsAmnestic mild cognitive impairment in Parkinson's disease: A brain perfusion SPECT study,,MOVEMENT DISORDERS, Issue 3 2009Flavio Nobili MD Abstract The purpose of this study was to investigate cortical dysfunction in Parkinson's disease (PD) patients with amnestic deficit (PD-MCI). Perfusion single photon emission computed tomography was performed in 15 PD-MCI patients and compared (statistical parametric mapping [SPM2]) with three groups, i.e., healthy subjects (CTR), cognitively intact PD patients (PD), and common amnestic MCI patients (aMCI). Age, depression, and UPDRS-III scores were considered as confounding variables. PD-MCI group (P < 0.05, false discovery rate,corrected for multiple comparisons) showed relative hypoperfusion in bilateral posterior parietal lobe and in right occipital lobe in comparison to CTR. As compared to aMCI, MCI-PD demonstrated hypoperfusion in bilateral posterior parietal and occipital areas, mainly right cuneus and angular gyrus, and left precuneus and middle occipital gyrus. With a less conservative threshold (uncorrected P < 0.01), MCI-PD showed hypoperfusion in a left parietal region, mainly including precuneus and inferior parietal lobule, and in a right temporal-parietal-occipital region, including middle occipital and superior temporal gyri, and cuneus-precuneus, as compared to PD. aMCI versus PD-MCI showed hypoperfusion in bilateral medial temporal lobe, anterior cingulate, and left orbitofrontal cortex. PD-MCI patients with amnestic deficit showed cortical dysfunction in bilateral posterior parietal and occipital lobes, a pattern that can be especially recognized versus both controls and common aMCI patients, and to a lesser extent versus cognitively intact PD. The relevance of this pattern in predicting dementia should be evaluated in longitudinal studies. © 2008 Movement Disorder Society [source] Electrical source imaging for presurgical focus localization in epilepsy patients with normal MRIEPILEPSIA, Issue 4 2010Verena Brodbeck Summary Purpose:, Patients with magnetic resonance (MR),negative focal epilepsy (MRN-E) have less favorable surgical outcomes (between 40% and 70%) compared to those in whom an MRI lesion guides the site of surgical intervention (60,90%). Patients with extratemporal MRN-E have the worst outcome (around 50% chance of seizure freedom). We studied whether electroencephalography (EEG) source imaging (ESI) of interictal epileptic activity can contribute to the identification of the epileptic focus in patients with normal MRI. Methods:, We carried out ESI in 10 operated patients with nonlesional MRI and a postsurgical follow-up of at least 1 year. Five of the 10 patients had extratemporal lobe epilepsy. Evaluation comprised surface and intracranial EEG monitoring of ictal and interictal events, structural MRI, [18F]fluorodeoxyglucose positron emission tomography (FDG-PET), ictal and interictal perfusion single photon emission computed tomography (SPECT) scans. Eight of the 10 patients also underwent intracranial monitoring. Results:, ESI correctly localized the epileptic focus within the resection margins in 8 of 10 patients, 9 of whom experienced favorable postsurgical outcomes. Discussion:, The results highlight the diagnostic value of ESI and encourage broadening its application to patients with MRN-E. If the surface EEG contains fairly localized spikes, ESI contributes to the presurgical decision process. [source] Computer-assisted calculation of myocardial infarct size shortens the evaluation time of contrast-enhanced cardiac MRICLINICAL PHYSIOLOGY AND FUNCTIONAL IMAGING, Issue 1 2008Lene Rosendahl Summary Background:, Delayed enhancement magnetic resonance imaging depicts scar in the left ventricle which can be quantitatively measured. Manual segmentation and scar determination is time consuming. The purpose of this study was to evaluate a software for infarct quantification, to compare with manual scar determination, and to measure the time saved. Methods:, Delayed enhancement magnetic resonance imaging was performed in 40 patients where myocardial perfusion single photon emission computed tomography imaging showed irreversible uptake reduction suggesting a myocardial scar. After segmentation, the semi-automatic software was applied. A scar area was displayed, which could be corrected and compared with manual delineation. The different time steps were recorded with both methods. Results:, The software shortened the average evaluation time by 12·4 min per cardiac exam, compared with manual delineation. There was good correlation of myocardial volume, infarct volume and infarct percentage (%) between the two methods, r = 0·95, r = 0·92 and r = 0·91 respectively. Conclusion:, A computer software for myocardial volume and infarct size determination cut the evaluation time by more than 50% compared with manual assessment, with maintained clinical accuracy. [source] Validation of a new automated method for analysis of gated-SPECT imagesCLINICAL PHYSIOLOGY AND FUNCTIONAL IMAGING, Issue 3 2006Milan Lomsky Summary We recently presented a new method for quantification of CArdiac FUnction , denoted CAFU , as the first step in the development of an automated method for integrated interpretation of gated myocardial perfusion single photon emission computed tomography (SPECT) images. The aim of this study was to validate CAFU in the assessment of global and regional function of the left ventricle. Quantitative gated-SPECT (QGS), the most widely used software package for quantification of gated-SPECT images, was used as reference method for the measurements of ejection fraction (EF) and ventricular volumes, and visual analysis by an experienced physician was used as reference method for the measurements of regional wall motion and thickening. Two different groups of consecutive patients referred for myocardial perfusion scintigraphy were studied. Global function was evaluated in 316 patients and regional function in 49 other patients. The studies were performed using a 2-day stress/rest 99 m-Tc-sestamibi protocol. A good correlation was found between EF values from QGS and CAFU (EF CAFU = 0·84 EF QGS + 13, r = 0·94), but CAFU values were on average 4 EF points higher than QGS values. With CAFU the segments with normal thickening according to the physician showed significantly higher thickening values (in all parts of the myocardium) compared to the segments classified as having abnormal thickening. In conclusion, this study demonstrates that CAFU can be used to quantify global and regional function in gated-SPECT images. This is an important step in our development of an automated method for integrated interpretation of gated-SPECT myocardial perfusion scintigraphy studies. [source] |