Home About us Contact | |||
Perfusion Bioreactor (perfusion + bioreactor)
Selected AbstractsProduction of a Secreted Glycoprotein from an Inducible Promoter System in a Perfusion BioreactorBIOTECHNOLOGY PROGRESS, Issue 5 2004Matthew L. Lipscomb The primary advantage of an inducible promoter expression system is that production of the recombinant protein can be biochemically controlled, allowing for the separation of unique growth and production phases of the culture. During the growth phase, the culture is rapidly grown to high cell density prior to induction without the extra metabolic burden of exogenous protein production, thus minimizing the nonproductive period of the culture. Induction of the culture at high cell density ensures that the volumetric production will be maximized. In this work, we have demonstrated the feasibility of overexpressing a reporter glycoprotein from the inducible MMTV promoter in recombinant Chinese hamster ovary (CHO) cells cultured in a high cell density perfusion bioreactor system. Retention of suspension-adapted CHO cells was achieved by inclined sedimentation. To maximize volumetric production of the culture, we have demonstrated that high cell density must be achieved prior to induction. This operating scheme resulted in a 10-fold increase in volumetric titer over the low density induction culture, corresponding directly to a 10-fold increase in viable cell density during the highly productive period of the culture. The amount of glycoprotein produced in this high cell density induction culture during 26 days was 84-fold greater than that produced in a week long batch bioreactor. Long-term perfusion cultures of the recombinant cell line showed a production instability, a phenomenon that is currently being investigated. [source] Spatial and temporal patterns of bone formation in ectopically pre-fabricated, autologous cell-based engineered bone flaps in rabbitsJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 4 2008Oliver Scheufler Abstract Biological substitutes for autologous bone flaps could be generated by combining flap pre-fabrication and bone tissue engineering concepts. Here, we investigated the pattern of neotissue formation within large pre-fabricated engineered bone flaps in rabbits. Bone marrow stromal cells from 12 New Zealand White rabbits were expanded and uniformly seeded in porous hydroxyapatite scaffolds (tapered cylinders, 10,20 mm diameter, 30 mm height) using a perfusion bioreactor. Autologous cell-scaffold constructs were wrapped in a panniculus carnosus flap, covered by a semipermeable membrane and ectopically implanted. Histological analysis, substantiated by magnetic resonance imaging (MRI) and micro-computerized tomography scans, indicated three distinct zones: an outer one, including bone tissue; a middle zone, formed by fibrous connective tissue; and a central zone, essentially necrotic. The depths of connective tissue and of bone ingrowth were consistent at different construct diameters and significantly increased from respectively 3.1 ± 0.7 mm and 1.0 ± 0.4 mm at 8 weeks to 3.7± 0.6 mm and 1.4 ± 0.6 mm at 12 weeks. Bone formation was found at a maximum depth of 1.8 mm after 12 weeks. Our findings indicate the feasibility of ectopic pre-fabrication of large cell-based engineered bone flaps and prompt for the implementation of strategies to improve construct vascularization, in order to possibly accelerate bone formation towards the core of the grafts. [source] Design and validation of a pulsatile perfusion bioreactor for 3D high cell density culturesBIOTECHNOLOGY & BIOENGINEERING, Issue 6 2009Julie A. Chouinard Abstract This study presents the design and validation of a pulsatile flow perfusion bioreactor able to provide a suitable environment for 3D high cell density cultures for tissue engineering applications. Our bioreactor system is mobile, does not require the use of traditional cell culture incubators and is easy to sterilize. It provides real-time monitoring and stable control of pH, dissolved oxygen concentration, temperature, pressure, pulsation frequency, and flow rate. In this bioreactor system, cells are cultured in a gel within a chamber perfused by a culture medium fed by hollow fibers. Human umbilical vein endothelial cells (HUVEC) suspended in fibrin were found to be living, making connections and proliferating up to five to six times their initial seeding number after a 48-h culture period. Cells were uniformly dispersed within the 14.40,mm,× 17.46,mm,×,6.35,mm chamber. Cells suspended in 6.35-mm thick gels and cultured in a traditional CO2 incubator were found to be round and dead. In control experiments carried out in a traditional cell culture incubator, the scarcely found living cells were mostly on top of the gels, while cells cultured under perfusion bioreactor conditions were found to be alive and uniformly distributed across the gel. Biotechnol. Bioeng. 2009; 104: 1215,1223. © 2009 Wiley Periodicals, Inc. [source] A high-rate perfusion bioreactor for plant cellsBIOTECHNOLOGY & BIOENGINEERING, Issue 6 2006C. De Dobbeleer Abstract A perfusion bioreactor allowing continuous extraction of secondary metabolites was designed and challenged for Eschscholtzia californica plant cell suspensions. Four sedimentation columns mounted inside a 2.5-L bioreactor separated single cells and cell aggregates from the culture medium. Cells were elicited with chitin at day 4 and the liquid medium free of cells and debris was then continuously pumped to the extraction columns containing fluidized XAD-7 resins, and then recirculated back to the cell suspension. A medium upward velocity corresponding to cell sedimentation velocity maintained a stable cell/medium separation front in the columns for sedimented cell volume (SCV) of 90% (70% packed cell volume, PCV). Two perfusion bioreactor cultures of 10 and 14 days were performed. A maximum dilution rate of 20.4/day was reached from day 4 to day 6, and was then reduced to 5/day at day 9 for 55% SCV. Control cultures were performed without and with free extraction resins into the cell suspension. Perfusion cultures showed similar specific growth rates of 0.24,±,0.04/day before and after elicitation. However, production level in the perfusion cultures was similar to that from the culture without resins with a maximum of 2.06 µmole/gDW total alkaloids, with 1.54 µmole/gDW in the resins. Cultures with free resins resulted in 30.94 µmole/gDW with 28.4,±,8.8 µmole/gDW in the resins. Difference in the cells nutritional state from elicitation was identified as a major cause in the production reduction. However, pathway to chelilutine was favored in the continuous extraction culture. © 2006 Wiley Periodicals, Inc. [source] Role of nutrient supply on cell growth in bioreactor design for tissue engineering of hematopoietic cellsBIOTECHNOLOGY & BIOENGINEERING, Issue 7 2005Pragyansri Pathi Abstract In the present study, a dynamic mathematical model for the growth of granulocyte progenitor cells in the hematopoietic process is developed based on the principles of diffusion and chemical reaction. This model simulates granulocyte progenitor cell growth and oxygen consumption in a three-dimensional (3-D) perfusion bioreactor. Material balances on cells are coupled to the nutrient balances in 3-D matrices to determine the effects of transport limitations on cell growth. The method of volume averaging is used to formulate the material balances for the cells and the nutrients in the porous matrix containing the cells. All model parameters are obtained from the literature. The maximum cell volume fraction reached when oxygen is depleted in the cell layer at 15 days and is nearly 0.63, corresponding to a cell density of 2.25 × 108 cells/mL. The substrate inhibition kinetics for cell growth lead to complex effects with respect to the roles of oxygen concentration and supply by convection and diffusion on cell growth. Variation in the height of the liquid layer above the cell matrix where nutrient supply is introduced affected the relative and absolute amounts of oxygen supply by hydrodynamic flow and by diffusion across a gas permeable FEP membrane. Mass transfer restrictions of the FEP membrane are considerable, and the supply of oxygen by convection is essential to achieve higher levels of cell growth. A maximum growth rate occurs at a specific flow rate. For flow rates higher than this optimal, the high oxygen concentration led to growth inhibition and for lower flow rates growth limitations occur due to insufficient oxygen supply. Because of the nonlinear effects of the autocatalytic substrate inhibition growth kinetics coupled to the convective transport, the rate of growth at this optimal flow rate is higher than that in a corresponding well-mixed reactor where oxygen concentration is set at the maximum indicated by the inhibitory kinetics. ©2005 Wiley Periodicals, Inc. [source] Effects of Oxygen Transport on 3-D Human Mesenchymal Stem Cell Metabolic Activity in Perfusion and Static Cultures: Experiments and Mathematical ModelBIOTECHNOLOGY PROGRESS, Issue 4 2005Feng Zhao Human mesenchymal stem cells (hMSCs) have unique potential to develop into functional tissue constructs to replace a wide range of tissues damaged by disease or injury. While recent studies have highlighted the necessity for 3-D culture systems to facilitate the proper biological, physiological, and developmental processes of the cells, the effects of the physiological environment on the intrinsic tissue development characteristics in the 3-D scaffolds have not been fully investigated. In this study, experimental results from a 3-D perfusion bioreactor system and the static culture are combined with a mathematical model to assess the effects of oxygen transport on hMSC metabolism and proliferation in 3-D constructs grown in static and perfusion conditions. Cells grown in the perfusion culture had order of magnitude higher metabolic rates, and the perfusion culture supports higher cell density at the end of cultivation. The specific oxygen consumption rate for the constructs in the perfusion bioreactor was found to decrease from 0.012 to 0.0017 ,mol/106 cells/h as cell density increases, suggesting intrinsic physiological change at high cell density. BrdU staining revealed the noneven spatial distribution of the proliferating cells in the constructs grown under static culture conditions compared to the cells that were grown in the perfusion system. The hypothesis that the constructs in static culture grow under oxygen limitation is supported by higher YL/G in static culture. Modeling results show that the oxygen tension in the static culture is lower than that of the perfusion unit, where the cell density was 4 times higher. The experimental and modeling results show the dependence of cell metabolism and spatial growth patterns on the culture environment and highlight the need to optimize the culture parameters in hMSC tissue engineering [source] An Integrated Process for Mammalian Cell Perfusion Cultivation and Product Purification Using a Dynamic FilterBIOTECHNOLOGY PROGRESS, Issue 4 2002Leda R. Castilho In the present work, a dynamic filter was employed to develop an integrated perfusion/purification process. A recombinant CHO cell line producing a human anti-HIV IgG was employed in the experiments. In the first part of this work, the dynamic filter was fitted with conventional microfiltration membranes and tested as a new external cell retention device for perfusion cultivations. The filter was connected to a running perfusion bioreactor and operated for approximately 400 h at an average cell concentration of 10 million cells mL,1, whereby cell viability remained above 90% and no problems of sterility were experienced. In the second part of this work, the dynamic filter was employed to simultaneously carry out cell separation and product purification, using membrane adsorbers containing Protein A affinity ligands. An automated system was built, which integrated the features of an automated perfusion bioreactor and of a liquid chromatography system. The IgG was continuously adsorbed onto the affinity membranes and was periodically recovered through elution cycles. After connection of the filter, the system was operated for approximately 300 h, whereby three elution cycles were carried out. No progressive increase in transmembrane pressure was observed, indicating no membrane fouling problems, and the IgG was recovered practically free of contaminants in a 14-fold concentrated form, indicating that the integrated, one-step perfusion/purification process developed during this work is a promising alternative for the production of biologicals derived from mammalian cells. [source] |