Perfused Liver (perfused + liver)

Distribution by Scientific Domains
Distribution within Medical Sciences

Kinds of Perfused Liver

  • isolated perfused liver


  • Selected Abstracts


    A role for asymmetric dimethylarginine in the pathophysiology of portal hypertension in rats with biliary cirrhosis,,

    HEPATOLOGY, Issue 6 2005
    Wim Laleman
    Reduced intrahepatic endothelial nitric oxide synthase (eNOS) activity contributes to the pathogenesis of portal hypertension (PHT) associated with cirrhosis. We evaluated whether asymmetric dimethylarginine (ADMA), a putative endogenous NOS inhibitor, may be involved in PHT associated with cirrhosis. Two rat models of cirrhosis (thioacetamide [TAA]-induced and bile duct excision [BDE]-induced, n = 10 each), one rat model of PHT without cirrhosis (partial portal vein,ligated [PPVL], n = 10), and sham-operated control rats (n = 10) were studied. We assessed hepatic NOS activity, eNOS protein expression, plasma ADMA levels, and intrahepatic endothelial function. To evaluate intrahepatic endothelial function, concentration,effect curves of acetylcholine were determined in situ in perfused normal rat livers and livers of rats with TAA- or BDE-induced cirrhosis (n = 10) that had been preincubated with either vehicle or ADMA; in addition, measurements of nitrite/nitrate (NOx) and ADMA were made in perfusates. Both models of cirrhosis exhibited decreased hepatic NOS activity. In rats with TAA-induced cirrhosis, this decrease was associated with reduced hepatic eNOS protein levels and immunoreactivity. Rats with BDE-induced cirrhosis had eNOS protein levels comparable to those in control rats but exhibited significantly higher plasma ADMA levels than those in all other groups. In normal perfused liver, ADMA induced impaired endothelium-dependent vasorelaxation and reduced NOx perfusate levels, phenomena that were mimicked by NG -nitro- L -arginine-methyl ester. In contrast to perfused livers with cirrhosis induced by TAA, impaired endothelial cell-mediated relaxation in perfused livers with cirrhosis induced by BDE was exacerbated by ADMA and was associated with a decreased rate of removal of ADMA (34.3% ± 6.0% vs. 70.9% ± 3.2%). In conclusion, in rats with TAA-induced cirrhosis, decreased eNOS enzyme levels seem to be responsible for impaired NOS activity; in rats with biliary cirrhosis, an endogenous NOS inhibitor, ADMA, may mediate decreased NOS activity. (HEPATOLOGY 2005;42:1382,1390.) [source]


    Extrapolating in vitro metabolic interactions to isolated perfused liver: Predictions of metabolic interactions between R -bufuralol, bunitrolol, and debrisoquine

    JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 10 2010
    Sami Haddad
    Abstract Drug,drug interactions (DDIs) are a great concern to the selection of new drug candidates. While in vitro screening assays for DDI are a routine procedure in preclinical research, their interpretation and relevance for the in vivo situation still represent a major challenge. The objective of the present study was to develop a novel mechanistic modeling approach to quantitatively predict DDI solely based upon in vitro data. The overall strategy consisted of developing a model of the liver with physiological details on three subcompartments: the sinusoidal space, the space of Disse, and the cellular matrix. The substrate and inhibitor concentrations available to the metabolizing enzyme were modeled with respect to time and were used to relate the in vitro inhibition constant (Ki) to the in vivo situation. The development of the liver model was supported by experimental studies in a stepwise fashion: (i) characterizing the interactions between the three selected drugs (R -bufuralol (BUF), bunitrolol (BUN), and debrisoquine (DBQ)) in microsomal incubations, (ii) modeling DDI based on binary mixtures model for all the possible pairs of interactions (BUF,BUN, BUF,DBQ, BUN,DBQ) describing a mutual competitive inhibition between the compounds, (iii) incorporating in the binary mixtures model the related constants determined in vitro for the inhibition, metabolism, transport, and partition coefficients of each compound, and (iv) validating the overall liver model for the prediction of the perfusate kinetics of each drug determined in isolated perfused rat liver (IPRL) for the single and paired compounds. Results from microsomal coincubations showed that competitive inhibition was the mechanism of interactions between all three compounds, as expected since those compounds are all substrates of rat CYP2D2. For each drug, the Ki values estimated were similar to their Km values for CYP2D2 indicative of a competition for the same substrate-binding site. Comparison of the performance between the novel liver physiologically based pharmacokinetic (PBPK) model and published empirical models in simulating the perfusate concentration,time profile was based on the area under the curve (AUC) and the shape of the curve of the perfusate time course. The present liver PBPK model was able to quantitatively predict the metabolic interactions determined during the perfusions of mixtures of BUF,DBQ and BUN,DBQ. However, a lower degree of accuracy was obtained for the mixtures of BUF,BUN, potentially due to some interindividual variability in the relative proportion of CYP2D1 and CYP2D2 isoenzymes, both involved in BUF metabolism. Overall, in this metabolic interaction prediction exercise, the PBPK model clearly showed to be the best predictor of perfusate kinetics compared to more empirical models. The present study demonstrated the potential of the mechanistic liver model to enable predictions of metabolic DDI under in vivo condition solely from in vitro information. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:4406,4426, 2010 [source]


    Red blood cells attenuate sinusoidal endothelial cell injury by scavenging xanthine oxidase-dependent hydrogen peroxide in hyperoxic perfused rat liver

    LIVER INTERNATIONAL, Issue 3 2000
    Satoru Motoyama
    Abstract:Aims/Background: Rat liver perfused with an oxygenated buffered solution alone results in degenerative changes even when the perfusion flow is accelerated to give a sufficient oxygen supply. On the other hand, perfusion media supplemented with red blood cells (RBCs) preserve the viability of the liver. The present study was conducted to clarify how RBCs protect the isolated perfused liver. Methods: The liver was perfused with and without RBCs in a perfusate equilibrated with supra-physiological oxygen tension at regulated inflow pressures, and controlled hepatic oxygen consumption. We examined alanine aminotransferase and purine nucleoside phosphorylase activity in the perfusate as specific markers of liver cells injury. Hydrogen peroxide (H2O2) production and morphological changes were determined using cerium electron microscopy. Apoptosis was detected by measuring CPP 32 protease activity and using TdT-mediated dUTP-digoxigenin nick end-labeling. Results: When the liver was perfused with RBC-free buffer, H2O2 production and consequent injury progressing to apoptosis were initiated in the sinusoidal endothelial cells (SECs). After SECs were injured, H2O2 appeared in the hepatocytes. H2O2 production and associated degenerative changes were attenuated both morphologically and enzymatically by the addition of RBCs, a specific xanthine oxidase (XOD) inhibitor and the H2O2 radical scavenger, catalase. Conclusions: In the liver perfused with RBC-free buffer, H2O2 production and consequent injury were initiated in SECs. RBCs attenuate liver injury by scavenging XOD-dependent H2O2. [source]


    Improved rat steatotic and nonsteatotic liver preservation by the addition of epidermal growth factor and insulin-like growth factor-I to University of Wisconsin solution

    LIVER TRANSPLANTATION, Issue 9 2010
    M. Amine Zaouali
    This study examined the effects of epidermal growth factor (EGF) and insulin-like growth factor-I (IGF-I) supplementation to University of Wisconsin solution (UW) in steatotic and nonsteatotic livers during cold storage. Hepatic injury and function were evaluated in livers preserved for 24 hours at 4°C in UW and in UW with EGF and IGF-I (separately or in combination) and then perfused ex vivo for 2 hours at 37°C. AKT was inhibited pharmacologically. In addition, hepatic injury and survival were evaluated in recipients who underwent transplantation with steatotic and nonsteatotic livers preserved for 6 hours in UW and UW with EGF and IGF-I (separately or in combination). The results, based on isolated perfused liver, indicated that the addition of EGF and IGF-I (separately or in combination) to UW reduced hepatic injury and improved function in both liver types. A combination of EGF and IGF-I resulted in hepatic injury and function parameters in both liver types similar to those obtained by EGF and IGF-I separately. EGF increased IGF-I, and both additives up-regulated AKT in both liver types. This was associated with glycogen synthase kinase-3, (GSK3,) inhibition in nonsteatotic livers and PPAR, overexpression in steatotic livers. When AKT was inhibited, the effects of EGF and IGF-I on GSK3,, PPAR,, hepatic injury and function disappeared. The benefits of EGF and IGF-I as additives in UW solution were also clearly seen in the liver transplantation model, because the presence of EGF and IGF-I (separately or in combination) in UW solution reduced hepatic injury and improved survival in recipients who underwent transplantation with steatotic and nonsteatotic liver grafts. In conclusion, EGF and IGF-I may constitute new additives to UW solution in steatotic and nonsteatotic liver preservation, whereas a combination of both seems unnecessary. Liver Transpl 16:1098,1111, 2010. © 2010 AASLD. [source]


    Disposition of isosteviol in the rat isolated perfused liver

    CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 5-6 2010
    Hongping Jin
    Summary 1. The aim of the present study was to investigate the mechanisms involved in the clearance of isosteviol using the rat isolated perfused liver. 2. Six livers from male Sprague-Dawley rats were perfused with 15.7 ,mol isosteviol in a recirculating system. Perfusate and bile samples were collected for 60 min and the liver was collected at the end of the perfusion. All samples collected were incubated with ,-glucuronidase. Isosteviol,glucuronide was determined as equivalent isosteviol. Isosteviol concentrations were determined using a previously developed liquid chromatography,tandem mass spectrometry method. The final isosteviol liver/perfusate (L/P), bile/liver (B/L) and isosteviol-glucuronide in bile/liver (BG/LG) ratios were determined. 3. Isosteviol has a high clearance (21.4 ± 4.8 mL/min) from the perfusate, with a short half-life (13 ± 4 min). ,-Glucuronidase incubation revealed that isosteviol is conjugated in the liver and excreted into the bile. There was no isosteviol-glucuronide detected in perfusate samples. The total recovery of the rat isolated perfused liver system is 74 ± 14% and glucuronidated isosteviol accounted for 23 ± 4% of the administered dose. 4. In conclusion, we are the first to characterize the metabolism of isosteviol using rat isolated liver perfusion. Our results strongly suggest that the liver is the main organ of isosteviol elimination and that isosteviol is glucuronidated in the liver before it is excreted into the bile. [source]


    A role for asymmetric dimethylarginine in the pathophysiology of portal hypertension in rats with biliary cirrhosis,,

    HEPATOLOGY, Issue 6 2005
    Wim Laleman
    Reduced intrahepatic endothelial nitric oxide synthase (eNOS) activity contributes to the pathogenesis of portal hypertension (PHT) associated with cirrhosis. We evaluated whether asymmetric dimethylarginine (ADMA), a putative endogenous NOS inhibitor, may be involved in PHT associated with cirrhosis. Two rat models of cirrhosis (thioacetamide [TAA]-induced and bile duct excision [BDE]-induced, n = 10 each), one rat model of PHT without cirrhosis (partial portal vein,ligated [PPVL], n = 10), and sham-operated control rats (n = 10) were studied. We assessed hepatic NOS activity, eNOS protein expression, plasma ADMA levels, and intrahepatic endothelial function. To evaluate intrahepatic endothelial function, concentration,effect curves of acetylcholine were determined in situ in perfused normal rat livers and livers of rats with TAA- or BDE-induced cirrhosis (n = 10) that had been preincubated with either vehicle or ADMA; in addition, measurements of nitrite/nitrate (NOx) and ADMA were made in perfusates. Both models of cirrhosis exhibited decreased hepatic NOS activity. In rats with TAA-induced cirrhosis, this decrease was associated with reduced hepatic eNOS protein levels and immunoreactivity. Rats with BDE-induced cirrhosis had eNOS protein levels comparable to those in control rats but exhibited significantly higher plasma ADMA levels than those in all other groups. In normal perfused liver, ADMA induced impaired endothelium-dependent vasorelaxation and reduced NOx perfusate levels, phenomena that were mimicked by NG -nitro- L -arginine-methyl ester. In contrast to perfused livers with cirrhosis induced by TAA, impaired endothelial cell-mediated relaxation in perfused livers with cirrhosis induced by BDE was exacerbated by ADMA and was associated with a decreased rate of removal of ADMA (34.3% ± 6.0% vs. 70.9% ± 3.2%). In conclusion, in rats with TAA-induced cirrhosis, decreased eNOS enzyme levels seem to be responsible for impaired NOS activity; in rats with biliary cirrhosis, an endogenous NOS inhibitor, ADMA, may mediate decreased NOS activity. (HEPATOLOGY 2005;42:1382,1390.) [source]


    Metabolic effects of carbenoxolone in rat liver

    JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 5 2006
    Leandro Silva Pivato
    The action of carbenoxolone on hepatic energy metabolism was investigated in the perfused rat liver and isolated mitochondria. In perfused livers, carbenoxolone (200,300 ,M) increased oxygen consumption, glucose production and glycolysis from endogenous glycogen. Gluconeogenesis from lactate or fructose, an energy-dependent process, was inhibited. This effect was already evident at a concentration of 25 ,M. The cellular ATP levels and the adenine nucleotide content were decreased by carbenoxolone, whereas the AMP levels were increased. In isolated mitochondria, carbenoxolone stimulated state IV respiration and decreased the respiratory coefficient with the substrates ,-hydroxybutyrate and succinate. The ATPase of intact mitochondria was stimulated, the ATPase of uncoupled mitochondria was inhibited, and the ATPase of disrupted mitochondria was not altered by carbenoxolone. These results indicate that carbenoxolone acts as an uncoupler of oxidative phosphorylation and, possibly, as an inhibitor of the ATP/ADP exchange system. The inhibitory action of carbenoxolone on mitochondrial energy metabolism could be contributing to induce the mitochondrial permeability transition (MPT), a key phenomenon in apoptosis. The results of the present study can explain, partly at least, the in vivo hepatotoxic actions of carbenoxolone that were found in a previous clinical evaluation. © 2006 Wiley Periodicals, Inc. J Biochem Mol Toxicol 20:230,240, 2006; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.20139 [source]


    Metabolism and disposition of resveratrol in the isolated perfused rat liver: Role of Mrp2 in the biliary excretion of glucuronides

    JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 4 2008
    Alexandra Maier-Salamon
    Abstract In this study, the hepatic metabolism and transport system for resveratrol was examined in isolated perfused livers from Wistar and Mrp2-deficient TR, rats. Based on extensive metabolism to six glucuronides and sulfates (M1,M6), the hepatic extraction ratio and clearance of resveratrol was very high in Wistar and TR, rats (E: 0.998 vs. 0.999; Cl: 34.9 mL/min vs. 36.0 mL/min). However, biliary excretion and efflux of conjugates differs greatly in TR, rats. While cumulative biliary excretion of the glucuronides M1, M2, M3, and M5 dropped dramatically to 0,6%, their efflux into perfusate increased by 3.6-, 1.8-, 2.5-, and 1.5-fold. In contrast, biliary secretion of the sulfates M4 and M6 was partially maintained in the Mrp2-deficient rats (61% and 39%) with a concomitant decline of their efflux into perfusate by 33.2% and 78.1%. This indicates that Mrp2 exclusively mediates the biliary excretion of resveratrol glucuronides but only partly that of sulfates. Cumulative secretion of unconjugated resveratrol into bile of TR, rats was only reduced by 40%, and into perfusate by 19%, suggesting only a minor role of Mrp2 in resveratrol elimination. In summary, resveratrol was dose-dependently metabolized to several conjugates whereby the canalicular transporter Mrp2 selectively mediated the biliary excretion of glucuronides. © 2007 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 97:1615,1628, 2008 [source]


    Effect of Hepatic Artery Flow on Bile Secretory Function After Cold Ischemia

    AMERICAN JOURNAL OF TRANSPLANTATION, Issue 2 2003
    David P. Foley
    These studies evaluated the influence of hepatic arterial flow on biliary secretion after cold ischemia. Preparation of livers for transplantation or hepatic support impairs biliary secretion. The earliest indication of cold preservation injury during reperfusion is circulatory function. Arterial flow at this time may be critical for bile secretion. Porcine livers were isolated, maintained at 4° for 2 h and connected in an extracorporeal circuit to an anesthetized normal pig. The extracorporeal livers were perfused either by both the hepatic artery and portal vein (dual) or by the portal vein alone (single). Incremental doses of sodium taurocholate were infused into the portal vein of both the dual and single perfused livers, and the bile secretion was compared. Most endogenous bile acids are lost during hepatic isolation. After supplementation, the biliary secretion of phosphatidyl choline and cholesterol was significantly better in the dual than single vessel-perfused livers; however, no difference was seen in bilirubin output. Single perfused livers were completely unable to increase biliary cholesterol in response to bile acid. The dependence of bile cholesterol secretion on arterial flow indicates the importance of this flow to the detoxification of compounds dependent on phosphatidyl choline transport during early transplantation. [source]