Perennial Streams (perennial + stream)

Distribution by Scientific Domains


Selected Abstracts


Structural patterns in coarse gravelriver beds: typology, survey and assessment of the roles of grain size and river regime

GEOGRAFISKA ANNALER SERIES A: PHYSICAL GEOGRAPHY, Issue 1 2002
Lea Wittenberg
The concept of river-bed stability as indexed by the occurrence of stable bed forms was examined in humid-temperate perennial streams and in Mediterranean ephemeral streams. The study examined the structural patterns of bed forms and their spatial distribution between temperate-humid and Mediterranean streams. Study sites in Northumberland, UK, and Mt. Carmel, Israel, were selected for their morphometric similarity, despite the contrast in climate, vegetation and hydrological regime. Fieldwork was based on a large number of Wolman grain size distributions and structure measurements along cross-sections at seven sites; Differences in mean grain size of bed structures were estimated using the general linear model (GLM) procedure and Duncan's multiple range test. Based on field evidence, river-bed configurations were divided into structural categories, according to the depositional setting of each measured particle on the river bed. Statistical analysis confirmed former qualitative descriptions of small-scale bed forms. The study identified spatial segregation in bed form distribution. In general, 30,40%of the bed material in the surveyed perennial streams was clustered, in contrast to approximately 10%in the ephemeral counterparts. The sorting index revealed higher values for the perennial streams, namely 2.39,3.59 compared with 1.73,2.07 for the ephemeral counterparts. It is suggested that the degree of sediment sorting and the proportion of clusters are strongly related. Sediment sorting, sediment supply and the hydrological regime explain the mechanism of cluster formation. It is assumed that climate shifts or human interference within river basins might affect the regional characteristic flood hydrograph, and consequently alter the sedimentary character of the river bed. In the case where river bed stability is reduced owing to changes in cluster bed form distribution, rivers that normally do not yield a significant amount of sediment might be subject to notable sedimentation problems. [source]


Improving the design and management of forest strips in human-dominated tropical landscapes: a field test on Amazonian dung beetles

JOURNAL OF APPLIED ECOLOGY, Issue 4 2010
Jos Barlow
Summary 1.,The future of tropical forest species depends in part on their ability to survive in human-modified landscapes. Forest strips present a priority area for biodiversity research because they are a common feature of many managed landscapes, are often afforded a high level of legal protection, and can provide a cost-effective and politically acceptable conservation strategy. 2.,Despite the potential conservation benefits that could be provided by forest strips, ecologists currently lack sufficient evidence to inform policy and guide their design and management. 3.,We used a quasi-experimental landscape in the Brazilian Amazon to test the importance of four management-relevant variables (forest type, isolation distance, forest structure, and large mammal activity) on the potential biodiversity conservation value of narrow forest strips for dung beetles. 4.,Information-theoretic model selection based on AICc revealed strong support for the influence of large mammal activity and forest type on dung beetle abundance; isolation distance on species richness; and forest structure on the relative abundance of matrix-tolerant species. Multi-dimensional scaling showed a strong influence of forest type and isolation on community composition and structure, with riparian and dry-land strips having complementary sets of species. 5.,Synthesis and applications. To enhance the conservation value and ecological integrity of forest strips in human-modified landscapes we recommend that strip design considers both isolation distance and whether or not the strips encompass perennial streams. In addition, we identify the maintenance of forest structure and the protection of large mammal populations as being crucially important for conserving forest dung beetle communities. [source]


EFFECTS OF PRESCRIPTIVE RIPARIAN BUFFERS ON LANDSCAPE CHARACTERISTICS IN NORTHERN MINNESOTA, USA,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 3 2002
JoAnn M. Hanowski
ABSTRACT: Forest buffers adjacent to water bodies are widely prescribed in forest management to protect ecological functions of riparian systems. To date, buffers have been applied on the landscape uniformly without quantifying their effectiveness or the effects they have on landscape characteristics. Our objective was to quantify landscape characteristics (amount of edge and interior forest) when buffers were applied to water bodies in a 100 by 100 km area of northern Minnesota. We used a Landsat classified image in a geographic information system platform to apply two buffer widths ,28.5 m and 57 m , to water bodies, including nonforested wetlands, intermittent or perennial streams, and lakes. A total of 107,141 ha (18.3 percent) of the forest area was adjacent to and within 28.5 m of these water bodies, while 201,457 ha of forest was within 57 m, representing 34.4 percent of the total forest area. Imposing a 28.5 m buffer on water bodies increased the amount of edge and interior forest in the study area. When water bodies were buffered with a 57 m forest strip, we found a slight increase in forest edge from the current condition, and this buffer width resulted in the largest amount of interior forest. Interior forest increased with the 57 m buffer due to the density of water bodies in this region; adjacent water bodies coalesced when buffers were applied and formed isolated forest islands that contained forest interior habitat. Instead of wholesale application of set width riparian buffers, we suggest that ecological conditions of riparian areas be evaluated on a site level and that areas that currently provide important riparian conditions be maintained on the landscape with appropriate management practices. [source]


Distribution modelling to guide stream fish conservation: an example using the mountain sucker in the Black Hills National Forest, USA

AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 7 2008
Daniel C. Dauwalter
Abstract 1.Conservation biologists need tools that can utilize existing data to identify areas with the appropriate habitat for species of conservation concern. Regression models that predict suitable habitat from geospatial data are such a tool. Multiple logistic regression models developed from existing geospatial data were used to identify large-scale stream characteristics associated with the occurrence of mountain suckers (Catostomus platyrhynchus), a species of conservation concern, in the Black Hills National Forest, South Dakota and Wyoming, USA. 2.Stream permanence, stream slope, stream order, and elevation interacted in complex ways to influence the occurrence of mountain suckers. Mountain suckers were more likely to be present in perennial streams, and in larger, higher gradient streams at higher elevations but in smaller, lower gradient streams at lower elevations. 3.Applying the logistic regression model to all streams provided a way to identify streams in the Black Hills National Forest most likely to have mountain suckers present. These types of models and predictions can be used to prioritize areas that should be surveyed to locate additional populations, identify stream segments within catchments for population monitoring, aid managers in assessing whether proposed forest management will potentially have impacts on fish populations, and identify streams most suitable for stream rehabilitation and conservation or translocation efforts. 4.When the effect of large brown trout (Salmo trutta) was added to the best model of abiotic factors, it had a negative effect on the occurrence of mountain suckers. Negative effects of brown trout on the mountain sucker suggest that management of recreational trout fisheries needs to be balanced with mountain sucker conservation in the Black Hills. However, more spatially explicit information on brown trout abundance would allow managers to understand where the two species interact and where recreational fisheries need to be balanced with fish conservation. Copyright © 2008 John Wiley & Sons, Ltd. [source]