Home About us Contact | |||
Pest Suppression (pest + suppression)
Selected AbstractsLandscape composition influences patterns of native and exotic lady beetle abundanceDIVERSITY AND DISTRIBUTIONS, Issue 4 2009M. M. Gardiner Abstract Aim, Coccinellid beetles are important predators that contribute to pest suppression in agricultural landscapes. Since the introduction of the exotic coccinellids Coccinella septempunctata L. and Harmonia axyridis Pallas into the USA, several studies have reported a decline of native Coccinellidae in agroecosystems. We aimed to investigate the influence of landscape composition on native and exotic coccinellid abundance within soybean fields. Location, Iowa, Michigan, Minnesota and Wisconsin. Methods, As part of a 2-year study (2005,06) on the biological control of the soybean aphid, Aphis glycines Matsumura, we examined coccinellid communities in 33 soybean fields using yellow sticky card traps. Landscape heterogeneity and composition were measured at multiple spatial scales ranging 1,3.5 km from focal soybean fields where coccinellid sampling took place. Results, Exotic species made up 90% of the total coccinellid community in Michigan soybean fields followed by Wisconsin (84%), Minnesota (66%) and Iowa (57%). Harmonia axyridis was the dominant exotic coccinellid in all states comprising 45,62% of the total coccinellid community, followed by C. septempunctata (13,30%). Two additional exotic species, Hippodamia variegata (Goeze) and Propylea quatuordecimpunctata (L.) were also found in the region. Overall, the most abundant native coccinellid was Hippodamia convergens Guerin-Meneville; however, its abundance varied across the region, comprising 0% (Michigan) to 28% (Iowa) of the total coccinellid community. Landscape structure significantly influenced the composition of coccinellid communities in soybean agroecosystems. We found that native coccinellids were most abundant in low-diversity landscapes with an abundance of grassland habitat while exotic coccinellids were associated with the abundance of forested habitats. Main conclusion, We propose that grassland dominated landscapes with low structural diversity and low amounts of forested habitat may be resistant to exotic coccinellid build-up, particularly H. axyridis and therefore represent landscape-scale refuges for native coccinellid biodiversity. [source] Functional benefits of predator species diversity depend on prey identityECOLOGICAL ENTOMOLOGY, Issue 5 2005A. Wilby Abstract., 1.,Determining the functional significance of species diversity in natural enemy assemblages is a key step towards prediction of the likely impact of biodiversity loss on natural pest control processes. While the biological control literature contains examples in which increased natural enemy diversity hinders pest control, other studies have highlighted mechanisms where pest suppression is promoted by increased enemy diversity. 2.,This study aimed to test whether increased predator species diversity results in higher rates of predation on two key, but contrasting, insect pest species commonly found in the rice ecosystems of south-east Asia. 3.,Glasshouse experiments were undertaken in which four life stages of a planthopper (Nilaparvata lugens) and a moth (Marasmia patnalis) were caged with single or three-species combinations of generalist predators. 4.,Generally, predation rates of the three-species assemblages exceeded expectation when attacking M. patnalis, but not when attacking N. lugens. In addition, a positive effect of increased predator species richness on overall predation rate was found with M. patnalis but not with N. lugens. 5.,The results are consistent with theoretical predictions that morphological and behavioural differentiation among prey life stages promotes functional complementarity among predator species. This indicates that emergent species diversity effects in natural enemy assemblages are context dependent; they depend not only on the characteristics of the predators species, but on the identity of the species on which they prey. [source] Biodiversity and biocontrol: emergent impacts of a multi-enemy assemblage on pest suppression and crop yield in an agroecosystemECOLOGY LETTERS, Issue 9 2003Bradley J. Cardinale Abstract The suppression of agricultural pests has often been proposed as an important service of natural enemy diversity, but few experiments have tested this assertion. In this study we present empirical evidence that increasing the richness of a particular guild of natural enemies can reduce the density of a widespread group of herbivorous pests and, in turn, increase the yield of an economically important crop. We performed an experiment in large field enclosures where we manipulated the presence/absence of three of the most important natural enemies (the coccinellid beetle Harmonia axyridis, the damsel bug Nabis sp., and the parasitic wasp Aphidius ervi) of pea aphids (Acyrthosiphon pisum) that feed on alfalfa (Medicago sativa). When all three enemy species were together, the population density of the pea aphid was suppressed more than could be predicted from the summed impact of each enemy species alone. As crop yield was negatively related to pea aphid density, there was a concomitant non-additive increase in the production of alfalfa in enclosures containing the more diverse enemy guild. This trophic cascade appeared to be influenced by an indirect interaction involving a second herbivore inhabiting the system , the cowpea aphid, Aphis craccivora. Data suggest that high relative densities of cowpea aphids inhibited parasitism of pea aphids by the specialist parasitoid, A. ervi. Therefore, when natural enemies were together and densities of cowpea aphids were reduced by generalist predators, parasitism of pea aphids increased. This interaction modification is similar to other types of indirect interactions among enemy species (e.g. predator,predator facilitation) that can enhance the suppression of agricultural pests. Results of our study, and those of others performed in agroecosystems, complement the broader debate over how biodiversity influences ecosystem functioning by specifically focusing on systems that produce goods of immediate relevance to human society. [source] Beneficial links for the control of aphids: the effects of compost applications on predators and preyJOURNAL OF APPLIED ECOLOGY, Issue 4 2008James R. Bell Summary 1Polyphagous predators, such as spiders and beetles, perform a fundamental ecosystem service as regulators of agricultural pests, particularly aphids. They are most effective when they colonize the crop before the pest has reached its exponential growth phase. However, this is also when predators find themselves in a state of near-starvation. 2Predator numbers can be enhanced by applications of different types of organic matter, but the mechanism is not clearly understood. One hypothesis is that compost applied to the field may introduce a new detrital food chain to maintain predators until the pest arrives, but this may also be detrimental to effective pest control, fostering a surplus of alternative prey and causing a switch away from the pest. To elucidate these possible outcomes, we report on the use of within-field compost applications on aphids and their predators, presenting 4 years of field-scale manipulations. 3We found both direct and indirect links between compost, aphids and predators. In years when compost-treated plots had significantly higher numbers of predators, aphids were in significantly lower numbers than in plots without compost. Conversely, when there was a lack of response by predators, aphid numbers showed similar trends in all treatments. 4In all years, alternative prey responded strongly to compost application and did not fluctuate at the level shown by predators, suggesting that these two prey groups were decoupled. Instead, the predicted positive feedback of compost on predators numbers was either weak or absent. 5Synthesis and applications. The effect of compost on aphids clearly requires further practical refinement if it is to provide constant pest suppression, making it difficult to provide specific management recommendations at this stage. In the short term, compost application may not always confer immediate benefits in terms of pest control alone but this must be set against other better known benefits (moisture retention, nutrients). In the long term, experiments measuring the full trophic pathway are needed to unravel the effects of organic matter type, application time and the siting of compost relative to the crop in order to optimise pest suppression potential. [source] Recolonisation and distribution of spiders and carabids in cereal fields after spring sowingANNALS OF APPLIED BIOLOGY, Issue 2 2006S. Öberg Abstract Generalist predators are important for pest suppression during pest establishment because they may occur in the crop before and during pest arrival. However, different crop management practices can have a negative effect on predator populations. If so, there is a need for recolonisation by the predators to the crop fields. An important pest in Sweden is the bird cherry-oat aphid, Rhopalosiphum padi, which migrates to cereal fields in spring. In turn, many cereal fields are spring sown and thus are disturbed by harrowing and sowing a short time before aphid arrival. In this study, three different questions about the populations of spiders and carabids in spring cereal crops were asked. First, does sowing in spring have a negative effect on the predators present in the fields? Second, if sowing has a negative effect on predator populations, do they recolonise the fields before pest arrival? Third, how are the predators distributed in the fields? We found that most carabids and most lycosid spiders were not affected by sowing and were distributed uniformly in the fields after sowing. Most linyphiid spiders were negatively affected by sowing, but then they recolonised the fields and were uniformly distributed in the fields after recolonisation. Thus, many spiders and carabids are present in the fields after sowing in spring and have the opportunity to suppress aphids during their establishment phase, which in turn may prevent a possible outbreak. [source] |