Home About us Contact | |||
Peptide Agonists (peptide + agonist)
Selected AbstractsNociceptin/Orphanin FQ Peptide in Hypothalamic Neurones Associated with the Control of Feeding BehaviourJOURNAL OF NEUROENDOCRINOLOGY, Issue 2 2010N. Maolood Nociceptin/orphanin FQ (N/OFQ), an endogenous peptide agonist of the opioid N/OFQ receptor, has been implicated in the regulation of energy balance. In the present study, we have used immunohistochemistry to investigate the cellular localisation and colocalisation of N/OFQ-immunoreactive cell bodies in hypothalamic regions containing neurones producing orexigenic or anorexigenic transmitters. In colchicine-treated rats, N/OFQ immunoreactivity was demonstrated in many cell bodies of the arcuate nucleus (Arc), paraventricular nucleus (PVN) and lateral hypothalamic area (LHA). Double-labelling revealed that N/OFQ was present in some neurones located in the ventrolateral part of the Arc producing pro-opiomelanocortin, as shown by the presence of the anorexigenic peptides ,-melanocyte-stimulating hormone (,-MSH) and cocaine- and amphetamine-regulated transcript and, occasionally, in single neurones of the ventrolateral Arc producing orexigenic agouti-related peptide, but not neuropeptide Y. N/OFQ immunoreactivity was also demonstrated in a few tyrosine hydroxylase- or dynorphin (DYN)-containing neurones in the dorsomedial part of the Arc. In the parvocellular PVN, N/OFQ was demonstrated in some thyrotrophin-releasing hormone- or DYN-, but not corticotrophin-releasing hormone-containing neurones. Most N/OFQ-immunoreactive neurones in the LHA contained orexin- and DYN, but not melanin-concentrating hormone. The results obtained, demonstrating the presence of N/OFQ in some ,-MSH- and in many orexin-containing neurones, suggest a functional relationship between these neuropeptides and N/OFQ in the control of feeding behaviour and body weight. [source] The Drosophila G protein-coupled receptor, Methuselah, exhibits a promiscuous response to peptidesPROTEIN SCIENCE, Issue 11 2009William W. Ja Abstract Methuselah (Mth) is a G protein-coupled receptor (GPCR) associated with longevity in Drosophila melanogaster. Previously, Stunted (Sun) was identified as a peptide agonist of Mth. Here, we identify two additional activators of Mth signaling: Drosophila Sex Peptide (SP) and a novel peptide (Serendipitous Peptide Activator of Mth, SPAM). Minimal functional sequences and key residues were identified from Sun and SPAM by studying truncation and alanine-scanning mutations. These peptide agonists share little sequence homology and illustrate the promiscuity of Mth for activation. mth mutants exhibit no defects in behaviors controlled by SP, casting doubt on the biological significance of Mth activation by any of these agonists, and illustrating the difficulty in applying in vitro studies to their relevance in vivo. Future studies of Mth ligands will help further our understanding of the functional interaction of agonists and GPCRs. [source] Intracellular degradation of somatostatin-14 following somatostatin-receptor 3-mediated endocytosis in rat insulinoma cellsFEBS JOURNAL, Issue 19 2008Dirk Roosterman Somatostatin receptor (SSTR) endocytosis influences cellular responsiveness to agonist stimulation and somatostatin receptor scintigraphy, a common diagnostic imaging technique. Recently, we have shown that SSTR1 is differentially regulated in the endocytic and recycling pathway of pancreatic cells after agonist stimulation. Additionally, SSTR1 accumulates and releases internalized somatostatin-14 (SST-14) as an intact and biologically active ligand. We also demonstrated that SSTR2A was sequestered into early endosomes, whereas internalized SST-14 was degraded by endosomal peptidases and not routed into lysosomal degradation. Here, we examined the fate of peptide agonists in rat insulinoma cells expressing SSTR3 by biochemical methods and confocal laser scanning microscopy. We found that [125I]Tyr11-SST-14 rapidly accumulated in intracellular vesicles, where it was degraded in an ammonium chloride-sensitive manner. In contrast, [125I]Tyr1-octreotide accumulated and was released as an intact peptide. Rhodamine-B-labeled SST-14, however, was rapidly internalized into endosome-like vesicles, and fluorescence signals colocalized with the lysosomal marker protein cathepsin D. Our data show that SST-14 was cointernalized with SSTR3, was uncoupled from the receptor, and was sorted into an endocytic degradation pathway, whereas octreotide was recycled as an intact peptide. Chronic stimulation of SSTR3 also induced time-dependent downregulation of the receptor. Thus, the intracellular processing of internalized SST-14 and the regulation of SSTR3 markedly differ from the events mediated by the other SSTR subtypes. [source] Side chain contributions to the interconversion of the topological isomers of guanylin-like peptidesJOURNAL OF PEPTIDE SCIENCE, Issue 6 2005Dr Axel Schulz Abstract The peptide hormones guanylin and uroguanylin are ligands of the intestinal guanylyl cyclase-C (GC-C) that is involved in the regulation of epithelial water and electrolyte transport. The small peptides contain 15 and 16 amino acids, respectively, and two disulfide bonds with a 1,3/2,4 connectivity. This structural feature causes the unique existence of two topological isoforms for each peptide in an approximate 3:2 ratio, with only one of the isoforms exhibiting GC-C-activating potential. The two uroguanylin isomers can be separated by HPLC and are of sufficient stability to be studied separately at ambient temperatures while the two guanylin isomers are rapidly interconverting even at low temperatures. Both isomers show clearly distinguishable 1H chemical shifts. To investigate the influence of certain amino acid side chains on this isomerism and interconversion kinetics, derivatives of guanylin and uroguanylin (L -alanine scan and chimeric peptides) were designed and synthesized by Fmoc solid-phase chemistry and compared by HPLC and 2D 1H NMR spectroscopy. Amino acid residues with the most significant effects on the interconversion kinetics were predominantly identified in the COOH-terminal part of both peptides, whereas amino acids in the central part of the peptides only moderately affected the interconversion. Thus, the conformational conversion among the isomers of both peptides is under the control of a COOH-terminal sterical hindrance, providing a detailed model for this dynamic isomerism. Our results demonstrate that kinetic control of the interconversion process can be achieved by the introduction of side chains with a defined sterical profile at suitable sequence positions. This is of potential impact for the future development of GC-C peptide agonists and antagonists. Copyright © 2004 European Peptide Society and John Wiley & Sons, Ltd. [source] The Drosophila G protein-coupled receptor, Methuselah, exhibits a promiscuous response to peptidesPROTEIN SCIENCE, Issue 11 2009William W. Ja Abstract Methuselah (Mth) is a G protein-coupled receptor (GPCR) associated with longevity in Drosophila melanogaster. Previously, Stunted (Sun) was identified as a peptide agonist of Mth. Here, we identify two additional activators of Mth signaling: Drosophila Sex Peptide (SP) and a novel peptide (Serendipitous Peptide Activator of Mth, SPAM). Minimal functional sequences and key residues were identified from Sun and SPAM by studying truncation and alanine-scanning mutations. These peptide agonists share little sequence homology and illustrate the promiscuity of Mth for activation. mth mutants exhibit no defects in behaviors controlled by SP, casting doubt on the biological significance of Mth activation by any of these agonists, and illustrating the difficulty in applying in vitro studies to their relevance in vivo. Future studies of Mth ligands will help further our understanding of the functional interaction of agonists and GPCRs. [source] The Role of Opiorphins (Endogenous Neutral Endopeptidase Inhibitors) in Urogenital Smooth Muscle BiologyTHE JOURNAL OF SEXUAL MEDICINE, Issue S3 2009Kelvin Paul Davies BSc ABSTRACT Introduction., The opiorphins are a newly characterized class of peptides that act as potent endogenous neutral endopeptidase (NEP) inhibitors. Recent reports have suggested that they play an important role in erectile physiology. Aim., This article reviews recent developments that increase our understanding of the role of the opiorphin family of peptides in erectile physiology. Methods., During a microarray screen of gene changes that occur in a rat diabetic model of erectile dysfunction (ED), Vcsa1 was one of the most down-regulated genes in the rat corpora. Quantitative real-time polymerase chain reaction demonstrated that in at least three models of diseases that result in ED (diabetes, aging, and cavernous nerve [CN] transection), Vcsa1 was down-regulated in the rat corpora. The human opiorphin family of genes (hSMR3A/B and ProL1) also acts as markers of erectile function in patients with ED. Main Outcome Measures., The reader will be informed of the most current research regarding the role of opiorphins in urogenital smooth muscle biology. Results., These observations led to the suggestion that genes encoding opiorphins (and potentially their peptide products) can act as markers of ED. Gene transfer of plasmids overexpressing Vcsa1 in aging rats, as well as intracorporal injection of sialorphin, led to an improvement in erectile function. In organ bath studies, we demonstrated that sialorphin can cause increased rates of relaxation of corporal smooth muscle (CSM). We have also demonstrated that in vitro, Vcsa1 causes changes in the expression of G-protein-coupled receptors (GPCRs). This has led us to suggest that the action of Vcsa1 on erectile physiology may act through relaxation of CSM by its ability to act as an inhibitor of NEP, therefore prolonging the action of peptide agonists at their GPCRs. Conclusions., Overall, there is a growing body of evidence that the opiorphins play a role in regulating CSM tone and thereby erectile function. Davies KP. The role of opiorphins (endogenous neutral endopeptidase inhibitors) in urogenital smooth muscle biology. J Sex Med 2009;6(suppl 3):286,291. [source] Nuclear magnetic resonance studies of CXC chemokine receptor 4 allosteric peptide agonists in solutionCHEMICAL BIOLOGY & DRUG DESIGN, Issue 2005O.K. Baryshnikova Abstract:, CXC chemokine receptor 4 (CXCR4) is an important pharmacological target due to its involvement in HIV-1 pathogenesis and cancer metastasis. Two recently discovered allosteric agonists that bind and activate CXCR4, the ASLW and RSVM peptides, were analyzed using solution nuclear magnetic resonance spectroscopy. Both peptides assumed an extended backbone conformation with several well-defined local motifs in the regions from residues 5 to 8 and 9 to 12. The local structures in the region of residues 5,8 were different for agonists studied here and natural ligands. The local structure in the region 9,12 was adopted by the entire ensemble of the ASLW peptide structures and by the subset of conformations for the RSVM peptide. The same turn was found in full-length stromal derived factor (SDF)-1 and in the small family of the SDF-1 N-terminal 17-mer. Similar examples in literature suggest the relevance of nascent structures in peptides to their biologically relevant conformations. The significance of found local structures and implications for further drug design are discussed. [source] The World of , - and , -Peptides Comprised of Homologated Proteinogenic Amino Acids and Other ComponentsCHEMISTRY & BIODIVERSITY, Issue 8 2004Dieter Seebach The origins of our nearly ten-year research program of chemical and biological investigations into peptides based on homologated proteinogenic amino acids are described. The road from the biopolymer poly[ethyl (R)-3-hydroxybutanoate] to the , -peptides was primarily a step from organic synthesis methodology (the preparation of enantiomerically pure compounds (EPCs)) to supramolecular chemistry (higher-order structures maintained through non-covalent interactions). The performing of biochemical and biological tests on the , - and , -peptides, which differ from natural peptides/proteins by a single or two additional CH2 groups per amino acid, then led into bioorganic chemistry and medicinal chemistry. The individual chapters of this review article begin with descriptions of work on , -amino acids, , -peptides, and polymers (Nylon-3) that dates back to the 1960s, even to the times of Emil Fischer, but did not yield insights into structures or biological properties. The numerous, often highly physiologically active, or even toxic, natural products containing ,- and ,-amino acid moieties are then presented. Chapters on the preparation of homologated amino acids with proteinogenic side chains, their coupling to provide the corresponding peptides, both in solution (including thioligation) and on the solid phase, their isolation by preparative HPLC, and their characterization by mass spectrometry (HR-MS and MS sequencing) follow. After that, their structures, predominantly determined by NMR spectroscopy in methanolic solution, are described: helices, pleated sheets, and turns, together with stack-, crankshaft-, paddlewheel-, and staircase-like patterns. The presence of the additional CC bonds in the backbones of the new peptides did not give rise to a chaotic increase in their secondary structures as many protein specialists might have expected: while there are indeed more structure types than are observed in the , -peptide realm , three different helices (10/12 -, 12 -, and 14 -helix) if we include oligomers of trans -2-aminocyclopentanecarboxylic acid, for example , the structures are already observable with chains made up of only four components, and, having now undergone a learning process, we are able to construct them by design. The structures of the shorter , -peptides can also be reliably determined by molecular-dynamics calculations (in solution; GROMOS program package). Unlike in the case of the natural helices, these compounds' folding into secondary structures is not cooperative. In , - and , -peptides, it is possible to introduce heteroatom substituents (such as halogen or OH) onto the backbones or to incorporate heteroatoms (NH, O) directly into the chain, and, thanks to this, it has been possible to study effects unobservable in the world of the , -peptides. Tests with proteolytic enzymes of all types (from mammals, microorganisms, yeasts) and in vivo examination (mice, rats, insects, plants) showed , - and , -peptides to be completely stable towards proteolysis and, as demonstrated for two , -peptides, extraordinarily stable towards metabolism, even when bearing functionalized side chains (such as those of Thr, Tyr, Trp, Lys, or Arg). The , -peptides so far examined also normally display no or only very weak cytotoxic, antiproliferative, antimicrobial, hemolytic, immunogenic, or inflammatory properties either in cell cultures or in vivo. Even biological degradation by microbial colonies of the types found in sewage-treatment plants or in soil is very slow. That there are indeed interactions of ,- and ,-peptides with biological systems, however, can be seen in the following findings: i) organ-specific distribution takes place after intravenous (i.v.) administration in rats, ii) transport through the intestines of rodents has been observed, iii) , -peptides with positively charged side chains (Arg and Lys) settle on cell surfaces, are able to enter into mammalian cells (fibroplasts, keratinocytes, HeLa cells), and migrate into their cell nuclei (and nucleoli), and iv) in one case, it has already been established that a , -peptide derivative can up- and down-regulate gene expression rates. Besides these less sharply definable interactions, it has also been possible to construct , - and , -peptide agonists of naturally occurring peptide hormones, MHC-binding , -peptides, or amphipathic , -peptide inhibitors of membrane-bound proteins in a controlled fashion. Examples include somatostatin mimics and the suppression of cholesterol transport through the intestinal brush-border membrane (by the SR-BI-protein). The results so far obtained from investigations into peptides made up of homologues of the proteinogenic amino acids also represent a contribution to deepening of our knowledge of the natural peptides/proteins, while potential for biomedicinal application of this new class of substances has also been suggested. [source] |