Pelitic Rocks (pelitic + rock)

Distribution by Scientific Domains


Selected Abstracts


Garnet,chloritoid,kyanite assemblages: eclogite facies indicators of subduction constraints in orogenic belts

JOURNAL OF METAMORPHIC GEOLOGY, Issue 7 2010
A. J. SMYE
Abstract The assemblage garnet,chloritoid,kyanite is shown to be quite common in high-pressure eclogite facies metapelites from orogenic belts around the world, and occurs over a narrowly restricted range of temperature ,550,600 °C, between 20 and 25 kbar. This assemblage is favoured particularly by large Al2O3:K2O ratios allowing the development of kyanite in addition to garnet and chloritoid. Additionally, ferric iron and manganese also help stabilize chloritoid in this assemblage. Pseudosections for several bulk compositions illustrate these high-pressure assemblages, and a new thermodynamic model for white mica to include calcium and ferric iron was required to complete the calculations. It is extraordinary that so many orogenic eclogite facies rocks, both mafic eclogites sensu stricto as well as metapelites with the above assemblage, all yield temperatures within the range of 520,600 °C and peak pressures ,23±3 kbar. Subduction of oceanic crust and its entrained associated sedimentary material must involve the top of the slab, where mafic and pelitic rocks may easily coexist, passing through these P,T conditions, such that rocks, if they proceed to further depths, are generally not returned to the surface. This, together with the tightly constrained range in peak temperatures which such eclogites experience, suggests thermal weakening being a major control on the depths at which crustal material is decoupled from the downgoing slab. [source]


Prograde metamorphic sequence of REE minerals in pelitic rocks of the Central Alps: implications for allanite,monazite,xenotime phase relations from 250 to 610 °C

JOURNAL OF METAMORPHIC GEOLOGY, Issue 5 2008
E. JANOTS
Abstract The distribution of REE minerals in metasedimentary rocks was investigated to gain insight into the stability of allanite, monazite and xenotime in metapelites. Samples were collected in the central Swiss Alps, along a well-established metamorphic field gradient that record conditions from very low grade metamorphism (250 °C) to the lower amphibolite facies (,600 °C). In the Alpine metapelites investigated, mass balance calculations show that LREE are mainly transferred between monazite and allanite during the course of prograde metamorphism. At very low grade metamorphism, detrital monazite grains (mostly Variscan in age) have two distinct populations in terms of LREE and MREE compositions. Newly formed monazite crystallized during low-grade metamorphism (<440 °C); these are enriched in La, but depleted in Th and Y, compared with inherited grains. Upon the appearance of chloritoid (,440,450 °C, thermometry based on chlorite,choritoid and carbonaceous material), monazite is consumed, and MREE and LREE are taken up preferentially in two distinct zones of allanite distinguishable by EMPA and X-ray mapping. Prior to garnet growth, allanite acquires two growth zones of clinozoisite: a first one rich in HREE + Y and a second one containing low REE contents. Following garnet growth, close to the chloritoid,out zone boundary (,556,580 °C, based on phase equilibrium calculations), allanite and its rims are partially to totally replaced by monazite and xenotime, both associated with plagioclase (± biotite ± staurolite ± kyanite ± quartz). In these samples, epidote relics are located in the matrix or as inclusions in garnet, and these preserve their characteristic chemical and textural growth zoning, indicating that they did not experience re-equilibration following their prograde formation. Hence, the partial breakdown of allanite to monazite offers the attractive possibility to obtain in situ ages, representing two distinct crystallization stages. In addition, the complex REE + Y and Th zoning pattern of allanite and monazite are essential monitors of crystallization conditions at relatively low metamorphic grade. [source]


Controls on low-pressure anatexis

JOURNAL OF METAMORPHIC GEOLOGY, Issue 2 2006
C. C. GERBI
Abstract Low-pressure anatexis, whereby rocks melt in place after passing through the andalusite stability field, develops under more restricted conditions than does low-pressure metamorphism. Our thermal modelling and review of published work indicate that the following mechanisms, operating alone, may induce anatexis in typical pelitic rocks without inducing wholesale melting in the lower crust: (i) magmatic advection by pervasive flow; (ii) crustal-scale detachment faulting; and (iii) the presence of a high heat-producing layer. Of these, only magmatic advection by pervasive flow and crustal-scale detachment faulting have been shown quantitatively to provide sufficient heat to cause widespread melting. Combinations of the above mechanisms with pluton-scale magmatic advection, shear heating, removal of the lithospheric mantle, or with each other provide additional means of developing suitable high temperatures at shallow crustal levels to generate low-pressure anatexis. [source]


Guandishan Granitoids of the Paleoproterozoic Lüliang Metamorphic Complex in the Trans-North China Orogen: SHRIMP Zircon Ages, Petrogenesis and Tectonic Implications

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 3 2009
Shuwen LIU
Abstract: The Paleoproterozoic Lüliang Metamorphic Complex (PLMC) is situated in the middle segment of the western margin of the Trans-North China Orogen (TNCO), North China Craton (NCC). As the most important lithological assemblages in the southern part of the PLMC, Guandishan granitoids consist of early gneissic tonalities, granodiorites and gneissic monzogranites, and younger gneissic to massive monzogranites. Petrochemical features reveal that the early gneissic tonalities and granodiorites belong to the medium-K calc-alkaline series; the early gneissic monzogranites are transitional from high-K calc-alkaline to the shoshonite series; the younger gneissic to massive monzogranites belong to the high-k calc-alkaline series, and all rocks are characterized by right-declined REE patterns and negative Nb, Ta, Sr, P, and Ti anomalies in the primitive mantle normalized spidergrams. SHRIMP zircon U,Pb isotopic dating reveals that the early gneissic tonalities and granodiorites formed at ,2.17 Ga, the early gneissic monzogranites at ,2.06 Ga, and the younger gneissic to massive monzogranites at ,1.84 Ga. Sm,Nd isotopic data show that the early gneissic tonalities and granodiorites have ,Nd(t) values of +0.48 to ,3.19 with Nd-depleted mantle model ages (TDM) of 2.76,2.47 Ga, and early gneissic monzogranites have ,Nd(t) values of ,0.53 to ,2.51 with TDM of 2.61,2.43 Ga, and the younger gneissic monzogranites have ,Nd(t) values of ,6.41 to ,2.78 with a TDM of 2.69,2.52 Ga. These geochemical and isotopic data indicate that the early gneissic tonalities, granodiorites, and monzogranites were derived from the partial melting of metamorphosed basaltic and pelitic rocks, respectively, in a continental arc setting. The younger gneissic to massive monzogranites were derived by partial melting of metamorphosed greywackes within the continental crust. Combined with previously regional data, we suggest that the Paleoproterozoic granitoid magmatism in the Guandishan granitoids of the PLMC may provide the best geological signature for the complete spectrum of Paleoproterozoic geodynamic processes in the Trans-North China Orogen from oceanic subduction, through collisional orogenesis, to post-orogenic extension and uplift. [source]