Home About us Contact | |||
Peak Abundance (peak + abundance)
Selected AbstractsDiel rhythm of nitrogen and carbon metabolism in the unicellular, diazotrophic cyanobacterium Crocosphaera watsonii WH8501ENVIRONMENTAL MICROBIOLOGY, Issue 2 2010Wiebke Mohr Summary We examined the diel variation in nitrogen and carbon metabolism in Crocosphaera watsonii WH8501 at the physiological and gene expression level in order to determine the temporal constraints for N2 fixation and photosynthesis. N2 fixation and photosynthesis were restricted to the dark and light periods, respectively, during a 24 h light,dark cycle. All genes studied here except one (psbA2) showed diel variations in their expression levels. The highest variation was seen in nifH and nifX relative transcript abundance with a factor of 3,5 × 103 between light and dark periods. Photosynthesis genes showed less variation with a maximum factor of about 500 and always had high relative transcript abundances relative to other genes. At the protein level, the photosystems appeared more stable than the nitrogenase complex over a 24 h light,dark cycle, suggesting that C. watsonii retains the ability to photosynthesize during the dark period of the diel cycle. In contrast, nitrogenase is synthesized daily and exhibits peak abundance during the dark period. Our results have implications for field studies with respect to the interpretation of environmental gene expression data. [source] Cyclomorphosis in Daphnia lumholtzi induced by temperatureFRESHWATER BIOLOGY, Issue 2 2000Peder M. Yurista Summary 1Cyclomorphosis is a well known phenomenon in Daphnia that involves a regular, seasonal, or induced change in body allometry. Long helmets and tail spines were induced in laboratory cultures of Daphnia lumholtzi with temperature of 31 °C as the proximal cue (temperature of locally occurring peak abundance in Kentucky Lake). The effect was greater in embryos than juveniles or adults exposed to the temperature cue. 2The temperature cue appears to have a threshold value (animals cultured at 25 or 28 °C did not develop elongated helmets or spines). The helmet and spine length receded both with D. lumholtzi kept at a constant 31 °C temperature and when water temperature was decreased. 3The induced helmet in this experiment (0.66 mm, 1.0 mm animal) was significantly longer than values reported in the literature for induction by planktivorous fish kairomones (0.25 mm, 1.2 mm animal). The strong response to a proximal cue of temperature may require the second weaker chemical cue for maintenance. It is suggested that a synergistic explanation with two cues may be more appropriate for cyclomorphosis induction and maintenance in Daphnia lumholtzi that could be tested with further studies. [source] Effects of decadal climate change on zooplankton over the last 50 years in the western subarctic North PacificGLOBAL CHANGE BIOLOGY, Issue 5 2006SANAE CHIBA Abstract Decadal- to multi-decadal variations have been reported in many regional ecosystems in the North Pacific, resulting in an increasing demand to elucidate the link between long-term climatic forcing and marine ecosystems. We detected phenological and quantitative changes in the copepod community in response to the decadal climatic variation in the western subarctic North Pacific by analyzing the extensive zooplankton collection taken since the 1950s, the Odate Collection. Copepod species were classified into five seasonal groups depending on the timing of the annual peak in abundance. The abundance of the spring community gradually increased for the period 1960,2002. The spring,summer community also showed an increasing trend in May, but a decadal oscillation pattern of quasi-30-year cycles in July. Phenological changes coincided with the climate regime shift in the mid-1970s, indicated by the Pacific decadal oscillation index (PDO). After the regime shift, the timing of the peak abundance was delayed one month, from March,April to April,May, in the spring community, whereas it peaked earlier, from June,July to May,June, in the spring,summer community, resulting in an overlap of the high productivity period for the two communities in May. Wintertime cooling, followed by rapid summertime warming, was considered to be responsible for delayed initiation and early termination of the productive season after the mid-1970s. Another phenological shift, quite different from the previous decade, was observed in the mid-1990s, when warm winters followed by cool summers lengthened the productive season. The results suggest that climatic forcing with different decadal cycles may operate independently during winter,spring and spring,summer to create seasonal and interannual variations in hydrographic conditions; thus, combinations of these seasonal processes may determine the annual biological productivity. [source] Low-temperature-driven early spawning migration of a temperate marine fishJOURNAL OF ANIMAL ECOLOGY, Issue 2 2004David W. Sims Summary 1It is often assumed that the timing of annual migrations of marine fish to spawning grounds occurs with very little change over time. However, it is unclear how much migration is influenced by climate change in marine species that spawn at sea but spend most time in estuarine conditions, especially as thermal regimes in estuaries may differ significantly from those in the open sea. 2Migration phenology was studied in a population of flounder, Platichthys flesus (L.) off south-west England using high-temporal resolution trawling data over a 13-year period. 3Flounder migrated from their estuarine habitat to spawning grounds at sea some 1,2 months earlier in years that were up to 2 °C cooler. Flounder arrived on the spawning grounds over a shorter time period (2,6 days) when colder than normal conditions prevailed in the estuary, compared to warmer years (12,15 days). This suggests that they were responding to low temperatures by exhibiting a more synchronous, population-level early migration. 4The timing of migration was earlier when the largest differences in temperatures between near-estuary and offshore environments occurred, differences that were related significantly to cold, negative phases of the North Atlantic Oscillation (NAO). 5Flounder migration phenology appears to be driven to a large extent by short-term, climate-induced changes in the thermal resources of their overwintering habitat. This suggests that climate fluctuations characterizing the NAO may have significant effects on the timing of the peak abundance of fish populations generally, which, in turn, may have implications for fisheries management. [source] Morphological and Molecular Characterization of a New Protist Family, Sandmanniellidae n. fam. (Ciliophora, Colpodea), with Description of Sandmanniella terricola n. g., n. sp. from the Chobe Floodplain in BotswanaTHE JOURNAL OF EUKARYOTIC MICROBIOLOGY, Issue 5 2009WILHELM FOISSNER ABSTRACT. Sandmanniella terricola n. g., n. sp. was discovered in soil from the Chobe floodplain, Botswana, southern Africa. Its morphology and 18S rDNA gene sequence were studied with standard methods. Sandmanniella terricola is very likely an adversity strategist because it reaches peak abundances 6,12 h after rewetting the soil and maintains trophic food vacuoles with undigested bacteria in the resting cyst, a highly specific feature suggested as an indicator for an adversity life strategy. Possibly, the energy of the stored food vacuoles is used for reproduction and support of the cyst wall. Morphologically, Sandmanniella terricola is inconspicuous, having a size of only 50 × 40 ,m and a simple, ellipsoidal shape. The main characteristics of the genus are a colpodid silverline pattern; a perioral cilia condensation; a flat, dish-shaped oral cavity, in the centre of which originates a long, conical oral basket resembling that of certain nassulid ciliates; and a vertically oriented left oral polykinetid composed of brick-shaped adoral organelles. This unique mixture of features and the gene sequence trees, where Sandmanniella shows an isolated position, suggest establishing a new family, the Sandmanniellidae n. fam., possibly related to the families Colpodidae or Bryophryidae. The curious oral basket provides some support for the hypothesis of a common ancestor of colpodid and nassulid ciliates. [source] |