Home About us Contact | |||
Peace River (peace + river)
Selected AbstractsFORECASTING DRY SEASON STREAMFLOW ON THE PEACE RIVER AT ARCADIA, FLORIDA, USA,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 4 2006David M. Coley ABSTRACT: The Peace River at Arcadia, Florida, is a municipal water supply supplement for southwestern Florida. Consequently, probabilities of encountering low flows during the dry season are of critical importance. Since the association between Pacific Ocean sea surface temperatures (SSTs) and seasonal streamflow variability in the southeastern United States is well documented, it is reasonable to generate forecasts based on this information. Here, employing historic records of minimum, mean, and maximum flows during winter (JFM) and spring (AMJ), upper and lower terciles define "above normal,""normal," and "below normal" levels of each variable. A probability distribution model describes the likelihood of these seasonal variables conditioned upon Pacific SSTs from the previous summer (JAS). Model calibration is based upon 40 (of 50) years of record employing stratified random sampling to ensure equal representation from each decade. The model is validated against the remaining 10 samples and the process repeated 100 times. Each conditional probability distribution yields varying probabilities of observing flow variables within defined categories. Generally, a warm (cold) Pacific is associated with higher (lower) flows. To test model skill, the forecast is constrained to be the most probable category in each calibration year, with significance tested by chi-square frequency tables. For all variables, the tables indicate high levels of association between forecast and observed terciles and forecast skill, particularly during winter. During spring the pattern is less clear, possibly due to the variable starting date of the summer rainy season. This simple technique suggests that Pacific SSTs provide a good forecast of low flows. [source] Hydro-climatic impacts on the ice cover of the lower Peace RiverHYDROLOGICAL PROCESSES, Issue 17 2008Spyros Beltaos Abstract Since the late 1960s, a paucity of ice-jam flooding in the lower Peace River has resulted in prolonged dry periods and considerable reduction in the area covered by lakes and ponds that provide habitat for aquatic life in the Peace,Athabasca Delta (PAD) region. Though major ice jams occur at breakup, antecedent conditions play a significant role in their frequency and severity. These conditions are partly defined by the mode of freezeup and the maximum thickness that is attained during the winter, shortly before the onset of spring and development of positive net heat fluxes to the ice cover. Data from hydrometric gauge records and from field surveys are utilized herein to study these conditions. It is shown that freezeup flows are considerably larger at the present time than before regulation, and may be responsible for more frequent formation of porous accumulation covers. Despite a concomitant rise in winter temperatures, solid-ice thickness has increased since the 1960s. Using a simple ice growth model, specifically developed for the study area, it is shown that porous accumulation covers enhance winter ice growth via accelerated freezing into the porous accumulation. Coupled with a reduction in winter snowfall, this effect can not only negate, but reverse, the effect of warmer winters on ice thickness, thus explaining present conditions. The present model is also shown to be a useful prediction tool, especially for extrapolating incomplete data to the end of the winter. Copyright © 2007 Crown in the right of Canada. Published by John Wiley & Sons, Ltd. [source] The role of waves in ice-jam flooding of the Peace-Athabasca DeltaHYDROLOGICAL PROCESSES, Issue 19 2007Spyros Beltaos Abstract Since the late 1960s, a paucity of ice-jam flooding in the lower Peace River has resulted in prolonged dry periods and considerable reduction in the area covered by lakes and ponds that provide habitat for aquatic life in the Peace-Athabasca Delta (PAD) region. To identify the causes of this trend, and to develop mitigation or adaptation strategies under present and future climatic conditions, it is necessary to understand the mechanisms that lead to breakup of the ice cover and jamming within the delta reach of Peace River. Because the lower Peace is extremely flat, the long-period waves caused by spring snowmelt are not generally capable of dislodging the winter ice cover, even under conditions of very high flow. The ice cover decays in place and rubble generation, an essential condition for ice jamming, does not occur. However, major jams do, on occasion, form in the middle section of the river and make their way to the delta via repeated releases and stalls. Each release generates a steep wave which can greatly amplify the hydrodynamic forces that are applied on the ice cover and bring about its dislodgment. This is quantified for the lower Peace River by applying recently developed methodology to local hydrometric data. Detailed in situ observations in the spring of 2003, and additional data from 1997 and 2002, fully corroborate this conclusion. Implications to other flat rivers of northern Canada are discussed. Copyright © 2007 Crown in the right of Canada. Published by John Wiley & Sons, Ltd. [source] Ice regime of the lower Peace River and ice-jam flooding of the Peace-Athabasca DeltaHYDROLOGICAL PROCESSES, Issue 19 2006Spyros Beltaos Abstract The Peace-Athabasca Delta (PAD) in northern Alberta is one of the world's largest inland freshwater deltas, home to large populations of waterfowl, muskrat, beaver, and free-ranging wood bison. Beginning in the mid-1970s, a paucity of ice-jam flooding in the lower Peace River has resulted in prolonged dry periods and considerable reduction in the area covered by lakes and ponds that provide a habitat for aquatic life in the PAD region. Using archived hydrometric data and in situ observations, the ice regime of the lower Peace is described and quantified, setting the stage for identification of the conditions that lead to ice-jam flooding and replenishment of Delta habitat. The first such condition is the occurrence of a mechanical, as opposed to a thermal, breakup event; second, the river flow should be at least 4000 m3/s; and third, an ice jam should form within the last 50 km of the Peace River. The type of breakup event depends on the freeze-up stage and spring flow. The former has increased as a result of flow regulation, and the latter has decreased owing to changing climatic patterns. Both trends tend to inhibit the occurrence of mechanical breakups and contribute to less frequent ice-jam flooding. Potential mitigation strategies are discussed. Copyright © 2006 Crown in the right of Canada. Published by John Wiley & Sons, Ltd. [source] |