Home About us Contact | |||
PC Substrate (pc + substrate)
Selected AbstractsUse of Reversal Nanoimprinting of Nanoparticles to Prepare Flexible Waveguide Sensors Exhibiting Enhanced Scattering of the Surface Plasmon ResonanceADVANCED FUNCTIONAL MATERIALS, Issue 11 2010Dehui Wan Abstract A flexible surface plasmon resonance (SPR)-based scattering waveguide sensor is prepared by directly imprinting hollow gold nanoparticles (NPs) and solid gold NPs onto flexible polycarbonate (PC) plates,without any surface modification,using a modified reversal nanoimprint lithography technology. Controlling the imprinting conditions, including temperature and pressure, allows for the fine adjustment of the depths of the embedded metal NPs and their SPR properties. This patterning approach exhibits a resolution down to the submicrometer level. A 3D finite-difference time domain simulation is used to examine the optical behavior of light propagating parallel to the air/substrate interface within the near-field regime. Consistent with the simulations, almost an order of magnitude enhancement in the scattering signal after transferring the metal NPs from the glass mold to the PC substrate is obtained experimentally. The enhanced signal is attributed to the particles' strong scattering of the guiding-mode waves (within the waveguide) and the evanescent wave (above the waveguide) simultaneously. Finally, the imprinting conditions are optimized to obtain a strongly scattering bio/chemical waveguide sensor. [source] In situ assays demonstrate that interferon-gamma suppresses infection-stimulated hepatic fibrin deposition by promoting fibrinolysisJOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 7 2006I. K. MULLARKY Summary.,Background:,Inflammatory cytokines potently impact hemostatic pathways during infection, but the tissue-specific regulation of coagulation and fibrinolysis complicates studies of the underlying mechanisms. Methods and Results:,Here, we describe assays that quantitatively measuring prothrombinase (PTase), protein C-ase (PCase) and plasminogen activator (PA) activities in situ, thereby facilitating studies of tissue-specific hemostasis. Using these assays, we investigate the mechanisms regulating hepatic fibrin deposition during murine toxoplasmosis and the means by which interferon-gamma (IFN- ,) suppresses infection-stimulated fibrin deposition. We demonstrate that Toxoplasma infection upregulates hepatic PTase, PCase, and PA activity. Wild type and gene-targeted IFN- , -deficient mice exhibit similar levels of infection-stimulated PTase activity. By contrast, IFN- , -deficiency is associated with increased PCase activity and reduced PA activity during infection. Parallel analyses of hepatic gene expression reveal that IFN- , -deficiency is associated with increased expression of thrombomodulin (TM), a key component of the PCase, increased expression of thrombin-activatable fibrinolysis inhibitor (TAFI), a PC substrate, and reduced expression of urokinase PA (u-PA). Conclusions:,These findings suggest that IFN- , suppresses infection-stimulated hepatic fibrin deposition by suppressing TM-mediated activation of TAFI, thereby destabilizing fibrin deposits, and concomitantly increasing hepatic u-PA activity, thereby promoting fibrinolysis. We anticipate that further application of these in situ assays will improve our understanding of tissue-specific hemostasis, its regulation by cytokines, and its dysregulation during coagulopathy. [source] Inhibition of proprotein convertases: Approaches to block squamous carcinoma development and progressionMOLECULAR CARCINOGENESIS, Issue 8 2007Ricardo López de Cicco Abstract Most proprotein convertase (PC) inhibitors are compounds that act as competitive inhibitors. All of them contain the general cleavage motif RXK/RR that binds to the PC's active site impairing further interactions with their physiological substrates. The first inhibitors synthesized were the acyl-peptidyl-chloromethyl ketones that bind to the PC's active site through its peptidyl group and are able to transverse the plasma membrane due to the acyl moiety. For instance, one of the members of this family that exhibits reduced toxicity and has been widely used as an effective general PCs inhbitor is the derivative decanoyl-RVKR-chloromethylketone (CMK). Another approach to PC inhibition is based on proteins that contain either a natural or a bioengineered PC cleavage consensus site. In this context, the bioengineered serpin, alpha-1-antitrypsin Portland (alpha 1-PDX or PDX), proved to be a potent inhibitor of furin, the most studied of the cancer-related PCs. Both PDX and CMK were able to inhibit invasiveness of squamous cell carcinoma cell lines by blocking activation of cancer-associated PC substrates such as MT-MMPs, IGF-1R, and VEGF-C. A similar effect was produced by inhibiting PC-mediated processing using furin prosegment. PDX and CMK have also been assayed in vivo using skin carcinogenesis models. Newer promising small molecules and RNA interference approaches are also being developed to inhibit PCs. © 2007 Wiley-Liss, Inc. [source] Chemical Micropatterning of Polycarbonate for Site-Specific Peptide Immobilization and Biomolecular InteractionsCHEMBIOCHEM, Issue 3 2007Olivier Carion Dr. Abstract Polycarbonate (PC) is a useful substrate for the preparation of microfluidic devices. Recently, its utility in bioanalysis has attracted much attention owing to the possibility of using compact discs as platforms for the high-throughput analysis of biomolecular interactions. In this article we report a novel method for the chemical micropatterning of polycarbonate based on the printing of functionalized silica nanoparticles. The semicarbazide groups present on the surface of the nanoparticles were used for the site-specific semicarbazone ligation of unprotected peptides derivatized by an ,-oxoaldehyde group. The peptide micropatterns permitted the specific capture of antibodies. We report also the characterization of micropatterns on PC by using a wide-field optical imaging technique called Sarfus; this allows the detection of nm-thick films by using nonreflecting PC substrates and an optical microscope working with reflected differential interference contrast. The method described here is an easy way to modify polycarbonate surfaces for biomolecular interaction studies and should stimulate the use of PC for developing plastic biosensors. [source] |