Patients Heterozygous (patient + heterozygous)

Distribution by Scientific Domains


Selected Abstracts


Improved virological response to highly active antiretroviral therapy in HIV-1-infected patients carrying the CCR5 ,32 deletion

HIV MEDICINE, Issue 4 2007
JJ Laurichesse
Background Patients heterozygous for the C-C chemokine receptor 5 (CCR5) ,32 deletion spontaneously progress less rapidly to AIDS and death than do wild-type patients. We investigated whether the CCR5 ,32 deletion has an impact on immunological, virological and clinical responses to highly active antiretroviral therapy (HAART) in HIV-1-infected patients. Patients and methods We included in the study 565 HIV-1-infected patients from the French HIV-1 infected cohort with documented date of serconversion (SEROCO)/haemophiliacs HIV-1 infected (HEMOCO) cohorts, who started HAART after 1996. We investigated virological responses to HAART at 6 months (defined as a plasma HIV-1 RNA measurement below the threshold of detection or a 2 log HIV-1 RNA decrease) and at 12 months (defined as a plasma HIV-1 RNA measurement below the threshold of detection) and clinical response to HAART by Kaplan,Meier survival curves, with AIDS and death as outcomes. Results The ,32 heterozygous patients (n=83; 15%) had a better virological response to HAART than wild-type patients (73 vs 53% at 6 months, P=0.01; and 60 vs 44% at 12 months, P=0.01). This better virological response was still observed after adjustment for antiretroviral status (whether or not patients were naïve to antiretroviral therapy), year of HAART initiation, number of new antiretroviral drugs and baseline viral load. There was no statistical difference between heterozygous patients and wild-type patients in terms of survival and AIDS-free survival. Conclusions CCR5 ,32 heterozygous patients were more likely to have a virological response to HAART than wild-type patients at 6 and 12 months. However, this virological response did not produce better immunological and clinical responses. The long-term impact of the ,32 deletion on survival in HIV-1-infected treated patients should be investigated in a meta-analysis. [source]


Glutathione-S-transferase genotypes and the adverse effects of azathioprine in young patients with inflammatory bowel disease

INFLAMMATORY BOWEL DISEASES, Issue 1 2007
Gabriele Stocco PhD
Abstract Background: Adverse drug reactions to azathioprine, the prodrug of 6-mercaptopurine, occur in 15%,38% of patients and the majority are not explained by thiopurine-S-methyltransferase (TPMT) deficiency. Azathioprine is known to induce glutathione depletion and consumption of glutathione is greater in cells with high glutathione-S-transferase (GST) activity compared with those with low activity; moreover, some reports indicate that GST might play a direct role in the reaction of glutathione with azathioprine. The association between polymorphisms of GST-M1, GST-P1, GST-T1, and TPMT genes and the adverse effects of azathioprine was therefore investigated. Methods: Seventy patients with inflammatory bowel disease (IBD), treated with azathioprine, were enrolled and clinical data were retrospectively determined. TPMT and GST genotyping were performed by polymerase chain reaction (PCR) assays on DNA extracted from blood samples. Results: Fifteen patients developed adverse effects (21.4%); there was a significant underrepresentation of the GST-M1 null genotype among patients developing adverse drug reactions to azathioprine (odds ratio [OR] = 0.18, 95% confidence interval [CI] = 0.037,0.72, P = 0.0072) compared with patients who did not develop adverse effects. Patients heterozygous for TPMT mutations presented a marginally significant increased probability of developing adverse effects (OR = 6.38, 95% CI = 0.66,84.1, P = 0.062). Moreover, among the 55 patients who did not develop adverse effects, there was a significant underrepresentation of the GST-M1 null genotype among patients who displayed lymphopenia as compared with those that did not display this effect of azathioprine (OR = 0.15, 95% CI = 0.013,1.08, P = 0.032). Conclusion: Patients with IBD with a wildtype GST-M1 genotype present increased probability of developing adverse effects and increased incidence of lymphopenia during azathioprine treatment. (Inflamm Bowel Dis 2007;13:57,64) [source]


Recurrent familial hypobetalipoproteinemia,induced nonalcoholic fatty liver disease after living donor liver transplantation

LIVER TRANSPLANTATION, Issue 7 2009
Noboru Harada
Familial hypobetalipoproteinemia (FHBL) is one of the causes of nonalcoholic steatohepatitis (NASH) and a codominant disorder. Patients heterozygous for FHBL may be asymptomatic, although they demonstrate low plasma levels of low-density lipoprotein (LDL) cholesterol and apolipoprotein B. Here we report a nonobese 54-year-old man with decompensated liver cirrhosis who underwent living donor liver transplantation with his son as the donor. Low albuminemia and refractory ascites persisted after transplantation. A biopsy specimen obtained 11 months after liver transplantation revealed severe steatosis and fibrosis, and recurrent NASH was diagnosed on the basis of pathological findings. Both the patient's and donor's laboratory tests demonstrated low LDL cholesterol and apolipoprotein levels. Because mutations in messenger RNAs of microsomal triglyceride transfer protein and apolipoprotein B genes were excluded neither in the recipient nor in the donor, both were clinically diagnosed as being heterozygous for FHBL. We successfully treated the recipient with heterozygous FHBL,induced recurrent NASH after liver transplantation using our diet and exercise programs. Liver Transpl 15:806,809, 2009. © 2009 AASLD. [source]


Allelic imbalance of expression and epigenetic regulation within the alpha-synuclein wild-type and p.Ala53Thr alleles in Parkinson disease,

HUMAN MUTATION, Issue 6 2010
Gerassimos E. Voutsinas
Abstract Genetic alterations in the alpha-synuclein (SNCA) gene have been implicated in Parkinson Disease (PD), including point mutations, gene multiplications, and sequence variations within the promoter. Such alterations may be involved in pathology through structural changes or overexpression of the protein leading to protein aggregation, as well as through impaired gene expression. It is, therefore, of importance to specify the parameters that regulate SNCA expression in its normal and mutated state. We studied the expression of SNCA alleles in a lymphoblastoid cell line and in the blood cells of a patient heterozygous for p.Ala53Thr, the first mutation to be implicated in PD pathogenesis. Here, we provide evidence that: (1) SNCA shows monoallelic expression in this patient, (2) epigenetic silencing of the mutated allele involves histone modifications but not DNA methylation, and (3) steady-state mRNA levels deriving from the normal SNCA allele in this patient exceed those of the two normal SNCA alleles combined, in matching, control individuals. An imbalanced SNCA expression in this patient is thus documented, with silencing of the p.Ala53Thr allele and upregulation of the wild-type-allele. This phenomenon is demonstrated for a first time in the SNCA gene, and may have important implications for PD pathogenesis. Hum Mutat 31:1,7, 2010. © 2010 Wiley-Liss, Inc. [source]


Atypical methylmalonic aciduria: frequency of mutations in the methylmalonyl CoA epimerase gene (MCEE),,

HUMAN MUTATION, Issue 10 2007
Abigail B. Gradinger
Abstract Methylmalonic aciduria is known to result from defects in the enzyme methylmalonyl CoA mutase (MCM) (mut complementation group) and from defects in the synthesis of the MCM cofactor adenosylcobalamin (cblA, cblB, cblC, cblD, and cblF groups). Two patients who excrete methylmalonic acid have recently been shown to have a homozygous nonsense mutation in the gene coding for methylmalonyl CoA epimerase (MCEE). To further understand the cause of methylmalonic acid excretion, the MCEE gene was sequenced in 229 patients with elevations of methylmalonic acid excretion for which no cause was known. Mutations in MCEE were detected in five patients: two patients homozygous for c.139C>T, p.R47X, one patient homozygous for c.178A>C, p.K60Q, and two patients heterozygous for c.427C>T, p.R143C. Fusion of fibroblast lines from two patients homozygous for c.139C>T, p.R47X did not result in correction of [14C]propionate incorporation toward control values while the defect in these fibroblasts was complemented by mut, cblA, and cblB fibroblasts. Infection with wild-type MCEE cDNA resulted in correction of the biochemical phenotype in cells from both patients. © 2007 Wiley-Liss, Inc. [source]


Polymorphism in the proximal promoter region of the perforin gene and its impact on the course of HIV infection

INTERNATIONAL JOURNAL OF IMMUNOGENETICS, Issue 2 2006
D. McIlroy
Summary Cytotoxic T lymphocytes (CTLs) play an essential role in the control of viral replication during human immunodeficiency virus (HIV) infection. However, the efficacy of the CTL response varies between individuals. We tested the hypothesis that genetic polymorphisms in the lytic effector molecule perforin could influence the progression of HIV infection. The perforin gene was screened for single nucleotide polymorphisms (SNPs) by denaturing high-performance liquid chromatography (dHPLC). Correlations were sought between perforin genotype, perforin expression and lytic function of CD8+ T lymphocytes from HIV-positive patients. Association of perforin genotype with disease progression was investigated in 426 seroconverters enrolled in the French SEROCO cohort. AIDS-free survival curves were constructed using the Kaplan,Meier method and compared using the log-rank test. Three SNPs were found in the proximal promoter region of the perforin gene: 63G (allelic frequency 0.029), 112G (allelic frequency 0.071) and 1012T (allelic frequency 0.070). The presence of the 1012T genotype correlated with fewer perforin+ cells among circulating CD8+ CTL. However, CTL lines from HIV -positive individuals heterozygous for the perforin 1012T SNP displayed normal lysis of target cells, and within the SEROCO cohort, patients heterozygous for the 1012T SNP showed normal disease progression. However, 1012T/T homozygotes showed a tendency towards slower disease progression (P = 0.08). In conclusion, polymorphism in the perforin gene is limited, and although the 1012T genotype appears to influence perforin expression, it was not conclusively associated with disease progression in HIV infection. [source]


Double Heterozygosity with Mutations Involving both the GJB2 and GJB6 Genes is a Possible, but very Rare, Cause of Congenital Deafness in the Czech Population

ANNALS OF HUMAN GENETICS, Issue 1 2005
P. Seeman
Summary Mutations in the GJB2 gene are the most common cause of prelingual, autosomal recessive, sensorineural hearing loss worldwide. Nevertheless, 10% to 50% of patients with prelingual nonsyndromic deafness only carry one mutation in the GJB2 gene. Recently a large 342 kb deletion named ,(GJB6-D13S1830) involving the GJB6 gene was reported in Spanish and French deafness patients, either in a homozygous state or in combination with a monoallelic GJB2 mutation. No data have been reported about the frequency of this mutation in central Europe. Thirteen Czech patients with prelingual nonsyndromic sensorineural deafness carrying only one pathogenic mutation in the GJB2 gene were tested for the presence of the ,(GJB6-D13S1830) mutation. One patient with a GJB2 mutation (313del14) also carried the ,(GJB6-D13S1830). This is the first reported Czech case, and probably also the first central European case, of prelingual deafness due to mutations involving both the GJB2 and GJB6 genes. In addition, the ,(GJB6-D13S1830) was not detected in 600 control chromosomes from Czech individuals with normal hearing. We show that in the Czech Republic the ,(GJB6-D13S1830) is not the second most common causal factor in deafness patients heterozygous for a single GJB2 mutation, and that ,(GJB6-D13S1830) is very rare in central Europe compared to reports from Spain, France and Israel. [source]


Clinical disease among patients heterozygous for familial mediterranean fever,

ARTHRITIS & RHEUMATISM, Issue 6 2009
Dina Marek-Yagel
Objective To define the molecular basis of familial Mediterranean fever (FMF) in patients with only 1 mutation in the MEFV gene. Methods Genetic analysis was performed in 20 FMF patients, including full sequencing of complementary DNA (cDNA) samples and multiplex ligation-dependent probe amplification analysis. In patients with first-degree relatives with FMF, haplotype analysis was also performed. Results A second mutation was found in 2 patients. In the other 18 patients, we could not identify additional mutations, large genomic deletions, or duplications. Analysis of single-nucleotide polymorphisms along the cDNA ruled out a lack of expression of 1 of the alleles. In 2 of the 3 families in which more than 1 sibling had FMF, we showed that the affected siblings inherited a different MEFV allele from the parent who did not have the MEFV mutation. Conclusion These findings are highly consistent with the existence of a clinical phenotype among some patients who are heterozygous for FMF and could explain the vertical transmission in some families. A single mutation in the MEFV gene may be much more common than was previously thought and may include up to 25% of patients who are diagnosed as having FMF. [source]


Genetic, immunologic, and immunohistochemical analysis of the programmed death 1/programmed death ligand 1 pathway in human systemic lupus erythematosus

ARTHRITIS & RHEUMATISM, Issue 1 2009
George K. Bertsias
Objective A putative regulatory intronic polymorphism (PD1.3) in the programmed death 1 (PD-1) gene, a negative regulator of T cells involved in peripheral tolerance, is associated with increased risk for systemic lupus erythematosus (SLE). We undertook this study to determine the expression and function of PD-1 in SLE patients. Methods We genotyped 289 SLE patients and 256 matched healthy controls for PD1.3 by polymerase chain reaction,restriction fragment length polymorphism analysis. Expression of PD-1 and its ligand, PDL-1, was determined in peripheral blood lymphocytes and in renal biopsy samples by flow cytometry and immunohistochemistry. A crosslinker of PD-1 was used to assess its effects on anti-CD3/anti-CD28,induced T cell proliferation and cytokine production. Results SLE patients had an increased frequency of the PD1.3 polymorphism (30.1%, versus 18.4% in controls; P = 0.006), with the risk A allele conferring decreased transcriptional activity in transfected Jurkat cells. Patients homozygous for PD1.3,but not patients heterozygous for PD1.3,had reduced basal and induced PD-1 expression on activated CD4+ T cells. In autologous mixed lymphocyte reactions (AMLRs), SLE patients had defective PD-1 induction on activated CD4+ cells; abnormalities were more pronounced among homozygotes. PD-1 was detected within the glomeruli and renal tubules of lupus nephritis patients, while PDL-1 was expressed by the renal tubules of both patients and controls. PD-1 crosslinking suppressed proliferation and cytokine production in both normal and lupus T cells; addition of serum from patients with active SLE significantly ameliorated this effect on proliferation. Conclusion SLE patients display aberrant expression and function of PD-1 attributed to both direct and indirect effects. The expression of PD-1/PDL-1 in renal tissue and during AMLRs suggests an important role in regulating peripheral T cell tolerance. [source]