Home About us Contact | |||
Pathways Downstream (pathway + downstream)
Kinds of Pathways Downstream Selected AbstractsAstaxanthin formation in the marine photosynthetic bacterium Rhodovulum sulfidophilum expressing crtI, crtY, crtW and crtZFEMS MICROBIOLOGY LETTERS, Issue 1 2006Daikichi Mukoyama Abstract This study reports the production of astaxanthin in the photosynthetic bacterium Rhodovulum sulfidophilum, which has adequate precursor pools and storage capabilities for heterologous carotenoid production. Chemical mutagenesis was carried out using ethylmethane sulfonate to produce mutants with a modified carotenoid biosynthesis pathway downstream of phytoene. Stable green- and gray-colored mutants were selected. Green mutants contained neurosporene or chloroxanthin as their major carotenoid (>90%), while the gray mutants accumulated phytoene. We previously demonstrated the production of ,-carotene in Rhodovulum sulfidophilum by cloning the Erythrobacter longus crtI (phytoene dehydrogenase) and crtY (lycopene cyclase) genes. In the present study, an expression vector for astaxanthin production was constructed that contained the Paracoccus crtW (,-carotene oxygenase) and crtZ (,-carotene hydroxylase) genes in addition to the E. longus crtI and crtY genes. A transconjugant, which can synthesize astaxanthin, was successfully generated (2.0 ,g g,1 DCW). [source] CELLULAR LOCALIZATION AND EXPRESSION OF pygo DURING DROSOPHILA DEVELOPMENTINSECT SCIENCE, Issue 2 2003LIN Xin-da Abstract Wg/Wnt signaling is a key signaling pathway in Drosophila. Many genes involved in Wingless(wg) signal transduction pathway downstream of Wg, or it s vertebrate Wg homologue Wnt, have been identified. Transduction of the Wg signal downstream of Wg is mediated by nuclear TCF/LEF-1, through association with Armadillo (Arm),-catenin. Pygopus (pygo) is a new identified component in this pathway. Cellular localization experiment showed that pygo was expressed specifically in the nucleus. The expression profile of pygo in embryos was examined using in situ hybridization. Although pygo expressed ubiquitously in the embryos, it expressed at relatively high level in pre-blastoderm embryos which indicate a high degree of maternally provided message, followed by a low level of ubiquitous zygotic expression. This continues into larval tissues (including wing disc, eye disc and leg disc), where pygo appears to be expressed at low level. Comparison of pygo expression levels, in the wing disc, eye disc and leg disc, showed pygo expression level in the wing disc pouch and leg disc were relative higher. [source] Plasticity of a transcriptional regulation network among alpha-proteobacteria is supported by the identification of CtrA targets in Brucella abortusMOLECULAR MICROBIOLOGY, Issue 4 2002Anne-Flore Bellefontaine Summary CtrA is a master response regulator found in many alpha-proteobacteria. In Caulobacter crescentus and Sinorhizobium meliloti, this regulator is essential for viability and is transcriptionally autoregulated. In C. crescentus, it is required for the regulation of multiple cell cycle events, such as DNA methylation, DNA replication, flagella and pili biogenesis and septation. Here, we report the characterization of the ctrA gene homologue in the ,2 -proteobacteria Brucella abortus, a facultative intracellular pathogen responsible for brucellosis. We detected CtrA expression in the main Brucella species, and its overproduction led to a phenotype typical of cell division defect, consistent with its expected role. A purified B. abortus CtrA recombinant protein (His6,CtrA) was shown to protect the B. abortus ctrA promoter from DNase I digestion, suggesting transcriptional autoregulation, and this protection was enhanced under CtrA phosphorylation on a conserved Asp residue. Despite the similarities shared by B. abortus and C. crescentus ctrA, the pathway downstream from CtrA may be distinct, at least partially, in both bacteria. Indeed, beside ctrA itself, only one (the ccrM gene) out of four B. abortus homologues of known C. crescentus CtrA targets is bound in vitro by phosphorylated B. abortus CtrA. Moreover, further footprinting experiments support the hypothesis that, in B. abortus, CtrA might directly regulate the expression of the rpoD, pleC, minC and ftsE homologues. Taken together, these results suggest that, in B. abortus and C. crescentus, similar cellular processes are regulated by CtrA through the control of distinct target genes. The plasticity of the regulation network involving CtrA in these two bacteria may be related to their distinct lifestyles. [source] Gibberellin controls the nodulation signaling pathway in Lotus japonicusTHE PLANT JOURNAL, Issue 2 2009Takaki Maekawa Summary Root nodule formation is regulated by several plant hormones, but the details of the regulation of the nodulation signaling pathway are largely unknown. In this study, the role of gibberellin (GA) in the control of root nodule symbiosis was investigated at the physiological and genetic levels in Lotus japonicus. Exogenous application of biologically active GA, GA3, inhibited the formation of infection threads and nodules, which was counteracted by the application of a biosynthesis inhibitor of GA, Uniconazole P. Nod factor-induced root hair deformation was severely blocked in the presence of GA, which was phenocopied by nsp2 mutants. The number of spontaneous nodules triggered by the gain-of-function mutation of calcium/calmodulin-dependent kinase (CCaMK) or the lotus histidine kinase 1 (LHK1) was decreased upon the addition of GA; moreover, the overexpression of the gain-of-function mutation of L. japonicus, SLEEPY1, a positive regulator of GA signaling, resulted in a reduced nodule number, without other aspects of root development being affected. These results indicate that higher GA signaling levels specifically inhibit the nodulation signaling pathway. Nod factor-dependent induction of NSP2 and NIN was inhibited by exogenous GA. Furthermore, the cytokinin-dependent induction of NIN was suppressed by GA. From these results, we conclude that GA inhibits the nodulation signaling pathway downstream of cytokinin, possibly at NSP2, which is required for Nod factor-dependent NIN expression. These results clarify the roles of GA in the nodulation signaling pathway, and in relation to the cytokinin signaling pathway for nodulation in L. japonicus. [source] Regression of systemic lupus erythematosus after development of an acquired Toll-like receptor signaling defect and antibody deficiencyARTHRITIS & RHEUMATISM, Issue 9 2009Marcella Visentini Toll-like receptor 9 (TLR-9) and TLR-7 may have a role in the production of anti-DNA and anti-RNA autoantibodies, respectively, but murine models do not clearly demonstrate their contribution to the development of systemic lupus erythematosus (SLE). Herein we describe a patient with SLE who had long-lasting remission of her autoimmune disease after development of an antibody deficiency resembling common variable immunodeficiency (CVID). After CVID had developed, anti,double-stranded DNA antibodies disappeared, although antinuclear antibodies remained positive for >10 years. In vitro studies revealed that the patient's B cells proliferated poorly and failed to differentiate into plasmablasts after stimulation of either TLR-9 or TLR-7, providing evidence for an acquired defect of the signaling pathway downstream of these TLRs. These observations suggest, although indirectly, that signaling through TLR-9 and TLR-7 is important in the pathogenesis of human SLE, and indicate that investigation of potential treatment strategies with TLR antagonists is warranted. [source] Different sensitivity of isoprenaline-induced responses in ventricular muscle to sodium nitroprusside in normotensive and spontaneously hypertensive rats 1AUTONOMIC & AUTACOID PHARMACOLOGY, Issue 2 2000A. M. Manso 1 The aim of the present work was to study the possible modulatory role of nitric oxide (NO) on the positive inotropic effect induced by the ,-adrenoceptor agonist isoprenaline in myocardial contractility, and whether this modulation is altered by hypertension. 2 The study was performed using right ventricular strips from the hearts of 6-month-old male Wistar,Kyoto (WKY) rats and spontaneously hypertensive rats (SHR). The contractile force of electrically-stimulated ventricular strips was measured by a force-displacement transducer. 3 Isoprenaline (from 10 nmol l,1 to 10 ,mol l,1) induced a concentration-dependent increase in cardiac contractility in strips from both rat strains. This positive inotropic effect to isoprenaline was reduced by the NO donor sodium nitroprusside (SNP, 0.1 mmol l,1) in muscles from WKY rats and slightly increased in those from SHR. The SNP-induced increase in strips from SHR was abolished by superoxide dismutase (100 U ml,1). 4 NG-nitro-arginine-methyl ester (L-NAME, 0.1 mmol l,1) and 1H-[1,2,4]oxadiazolo[4,3]quinoxalin-1-one (ODQ, 10 ,mol l,1), respective inhibitors of NO synthase and guanylate cyclase, increased the response to isoprenaline in muscles from WKY rats, whereas it was unaltered in strips from SHR. 5 In strips from WKY rats, the combination of ODQ and SNP produced an increase in the response elicited by isoprenaline, which was similar to that observed with ODQ or L-NAME. 8-Br-cyclicGMP (8-Br-cGMP, 0.1 mmol l,1), a permeable and structural cGMP analogue, decreased the effect induced by isoprenaline only in muscles from WKY rats. 6 These results suggest that the positive inotropic response to isoprenaline in ventricular strips from WKY rats is negatively modulated by NO, and positively by superoxide anions in those from SHR. The lack of a modulatory response to NO in ventricular strips from SHR is probably a result of an alteration of mechanisms in NO-signalling pathway downstream of cGMP formation in SHR hearts. [source] A single nutrient feed supports both chemically defined NS0 and CHO fed-batch processes: Improved productivity and lactate metabolismBIOTECHNOLOGY PROGRESS, Issue 5 2009Ningning Ma Abstract A chemically defined nutrient feed (CDF) coupled with basal medium preloading was developed to replace a hydrolysate-containing feed (HCF) for a fed-batch NS0 process. The CDF not only enabled a completely chemically defined process but also increased recombinant monoclonal antibody titer by 115%. Subsequent tests of CDF in a CHO process indicated that it could also replace the hydrolysate-containing nutrient feed in this expression system as well as providing an 80% increase in product titer. In both CDF NS0 and CHO processes, the peak lactate concentrations were lower and, more interestingly, lactate metabolism shifted markedly from net production to net consumption when cells transitioned from exponential to stationary growth phase. Subsequent investigations of the lactate metabolic shift in the CHO CDF process were carried out to identify the cause(s) of the metabolic shift. These investigations revealed several metabolic features of the CHO cell line that we studied. First, glucose consumption and lactate consumption are strictly complementary to each other. The combined cell specific glucose and lactate consumption rate was a constant across exponential and stationary growth phases. Second, Lactate dehydrogenase (LDH) activity fluctuated during the fed-batch process. LDH activity was at the lowest when lactate concentration started to decrease. Third, a steep cross plasma membrane glucose gradient exists. Intracellular glucose concentration was more than two orders of magnitude lower than that in the medium. Fourth, a large quantity of citrate was diverted out of mitochondria to the medium, suggesting a partially truncated tricarboxylic acid (TCA) cycle in CHO cells. Finally, other intermediates in or linked to the glycolytic pathway and the TCA cycle, which include alanine, citrate, isocitrate, and succinate, demonstrated a metabolic shift similar to that of lactate. Interestingly, all these metabolites are either in or linked to the pathway downstream of pyruvate, but upstream of fumarate in glucose metabolism. Although the specific mechanisms for the metabolic shift of lactate and other metabolites remain to be elucidated, the increased understanding of the metabolism of CHO cultures could lead to future improvements in medium and process development. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 [source] Syk-dependent ERK activation regulates IL-2 and IL-10 production by DC stimulated with zymosanEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 6 2007Abstract Zymosan is a particulate yeast preparation that elicits high levels of IL-2 and IL-10 from dendritic cells (DC) and engages multiple innate receptors, including the Syk-coupled receptor dectin-1 and the MyD88-coupled receptor TLR2. Here, we show that induction of IL-2 and IL-10 by zymosan requires activation of ERK MAP kinase in murine DC. Surprisingly, ERK activation in response to zymosan is completely blocked in Syk-deficient DC and unaffected by MyD88 deficiency. Conversely, ERK activation in response to the TLR2 agonist Pam3Cys is completely MyD88 dependent and unaffected by Syk deficiency. The inability of TLR2 ligands in zymosan to couple to ERK may explain the Syk dependence of the IL-2 and IL-10 response in DC and emphasises the importance of Syk-coupled pattern recognition receptors such as dectin-1 in the detection of yeasts. Furthermore, the lack of receptor compensation observed here suggests that responses induced by complex innate stimuli cannot always be predicted by the signalling pathways downstream of individual receptors. [source] A role for synGAP in regulating neuronal apoptosisEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2005Irene Knuesel Abstract The brain-specific Ras/Rap GTPase-activating protein synGAP is a major component of the postsynaptic density at glutamatergic synapses. It is a target for phosphorylation by Ca2+/calmodulin-dependent protein kinase II, which up-regulates its GTPase-activating activity. Thus, SynGAP may play an important role in coupling N -methyl- d -aspartate-type glutamate receptor activation to signaling pathways downstream of Ras or Rap. Homozygous deletion of synGAP is lethal within the first few days after birth. Therefore, to study the functions of synGAP, we used the cre/loxP recombination system to produce conditional mice mutants in which gradual loss of synGAP begins at ,,1 week, and usually becomes maximal by 3 weeks, after birth. The resulting phenotypes fall into two groups. In a small group, the level of synGAP protein is reduced to 20,25% of wild type, and they die at 2,3 weeks of age. In a larger group, the levels remain higher than ,,40% of wild type, and they survive and remain healthy. In all mutants, however, an abnormally high number of neurons in the hippocampus and cortex undergo apoptosis, as detected by caspase-3 activation. The effect is cell autonomous, occurring only in neuronal types in which the synGAP gene is eliminated. The level of caspase-3 activation in neurons correlates inversely with the level of synGAP protein measured at 2 and 8 weeks after birth, indicating that neuronal apoptosis is enhanced by reduction of synGAP. These data show that synGAP plays a role in regulation of the onset of apoptotic neuronal death. [source] Reduced FAS transcription in clones of U937 cells that have acquired resistance to Fas-induced apoptosisFEBS JOURNAL, Issue 2 2009Jeanette Blomberg Susceptibility to cell death is a prerequisite for the elimination of tumour cells by cytotoxic immune cells, chemotherapy or irradiation. Activation of the death receptor Fas is critical for the regulation of immune cell homeostasis and efficient killing of tumour cells by apoptosis. To define the molecular changes that occur during selection for insensitivity to Fas-induced apoptosis, a resistant variant of the U937 cell line was established. Individual resistant clones were isolated and characterized. The most frequently observed defect in the resistant cells was reduced Fas expression, which correlated with decreased FAS transcription. Clones with such reduced Fas expression also displayed partial cross-resistance to tumour necrosis factor-, stimulation, but the mRNA expression of tumour necrosis factor receptors was not decreased. Reintroduction of Fas conferred susceptibility to Fas but not to tumour necrosis factor-, stimulation, suggesting that several alterations could be present in the clones. The reduced Fas expression could not be explained by mutations in the FAS coding sequence or promoter region, or by silencing through methylations. Protein kinase B and extracellular signal-regulated kinase, components of signalling pathways downstream of Ras, were shown to be activated in some of the resistant clones, but none of the three RAS genes was mutated, and experiments using chemical inhibitors could not establish that the activation of these proteins was the cause of Fas resistance as described in other systems. Taken together, the data illustrate that Fas resistance can be caused by reduced Fas expression, which is a result of an unidentified mode of regulation. [source] The PI-3 kinase/Akt pathway and T cell activation: pleiotropic pathways downstream of PIP3IMMUNOLOGICAL REVIEWS, Issue 1 2003Lawrence P. Kane Summary Ligation of the T cell receptor for antigen (TCR) and/or costimulatory receptor CD28 results in rapid activation of phosphoinositide-3 kinase (PI-3 kinase). It remains unclear, however, precisely how this activation occurs and also how the newly generated phospholipid products trigger the various events associated with T cell activation. Here we discuss the current understanding of how PI-3 kinase is activated by the TCR and CD28 and what roles its products play in T cell activation. We also review recent advances in understanding the function of Akt in particular, especially its role in CD28 costimulation. Several functional targets of Akt are discussed in this regard: inducible transcription, cell survival, glucose metabolism, and the cellular translational machinery. These pathways have been associated with TCR/CD28 costimulation, and they have also been implicated as targets of Akt. [source] Role of Shc in T-cell development and functionIMMUNOLOGICAL REVIEWS, Issue 1 2003Li Zhang Summary: Shc is a prototype adapter protein that is expressed from the earliest stages of T-cell development. Shc becomes rapidly tyrosine phosphorylated after T-cell receptor (TCR) engagement. Expression of dominant negative forms of Shc in T-cell lines had also suggested a role for this adapter downstream of the TCR. However, until recently, the relative significance of Shc compared to several other adapters in T cells was unclear. Mice lacking Shc expression specifically in the T-cell lineage together with inducible expression of dominant negative Shc in transgenic mice have revealed an essential and nonredundant role for Shc in thymic T-cell development. Functional defects in a Jurkat T-cell line lacking Shc expression also suggest a role for Shc in mature T-cell functions. While the requirement of Shc in T-cell signaling is now established, precisely what signaling pathways downstream of Shc make this adapter unique are less clear. Although the Shc-mediated activation of the extracellular signal regulated kinase (Erk)/mitogen-activated protein kinase (MAPK) pathway could be one component, Shc likely signals to other pathways in T cells that are not yet discovered. A better molecular understanding of Shc function in the future could provide insights into how multiple adapters coordinate the various outcomes downstream of the TCR. [source] A novel inducible tyrosine kinase receptor to regulate signal transduction and neurite outgrowthJOURNAL OF NEUROSCIENCE RESEARCH, Issue 12 2009Ronald W. Alfa Abstract Nervous system growth factor gene delivery can promote axonal growth and prevent cell death in animal models of CNS trauma and neurodegenerative diseases. The ability to regulate growth factor expression or signaling pathways downstream from growth factor receptors remains a desirable goal for in vivo gene transfer. To achieve precise pharmacological modulation of neurotrophin activity, we have generated a chimeric trkA receptor (ItrkA) by fusing the entire intracellular domain of the trkA high-affinity NGF receptor to two intracellular, modified FK506 binding domains for the synthetic small molecule dimerization ligand AP20187. Rat PC12 cells were transduced with lentiviral vectors containing ItrkA and green fluorescent protein (GFP; via an internal ribosome entry site). Treatment of ItrkA-expressing PC12 cells with AP20187 induced neurite outgrowth and differentiation in a time- and dose-dependent fashion, with a half-maximal response at a concentration of 1 nM AP20187. Seventy percent of cells responded to AP20187 by day 3. Western blots demonstrated that AP20187 treatment resulted in phosphorylation of Erk1/2 and Akt in ItrkA-transduced PC12 cells but not in nontransduced, naïve cells. Phosphorylation levels were comparable to levels obtained with 50 ng/ml nerve growth factor (NGF). In addition, ItrkA lentiviral transduction of primary E15 dorsal root ganglion neurons significantly increased neurite growth three- to fourfold in the presence of AP20187 compared with control GFP transduced and naïve neurons. These results demonstrate that small ligand-induced dimerization of the intracellular domain of trkA can efficiently simulate the biological activity of NGF and provide a means to regulate intracellular neurotrophin receptor signaling. © 2009 Wiley-Liss, Inc. [source] Signal transduction downstream of salicylic and jasmonic acid in herbivory-induced parasitoid attraction by Arabidopsis is independent of JAR1 and NPR1PLANT CELL & ENVIRONMENT, Issue 9 2003R. M. P. VAN POECKE ABSTRACT Plants can defend themselves indirectly against herbivores by emitting a volatile blend upon herbivory that attracts the natural enemies of these herbivores, either predators or parasitoids. Although signal transduction in plants from herbivory to induced volatile production depends on jasmonic acid (JA) and salicylic acid (SA), the pathways downstream of JA and SA are unknown. Use of Arabidopsis provides a unique possibility to study signal transduction by use of signalling mutants, which so far has not been exploited in studies on indirect plant defence. In the present study it was demonstrated that jar1-1 and npr1-1 mutants are not affected in caterpillar (Pieris rapae)-induced attraction of the parasitoid Cotesia rubecula. Both JAR1 and NPR1 (also known as NIM1) are involved in signalling downstream of JA in induced defence against pathogens such as induced systemic resistance (ISR). NPR1 is also involved in signalling downstream of SA in defence against pathogens such as systemic acquired resistance (SAR). These results demonstrate that signalling downstream of JA and SA differs between induced indirect defence against herbivores and defence against pathogens such as SAR and ISR. Furthermore, it was demonstrated that herbivore-derived elicitors are involved in induced attraction of the parasitoid Cotesia rubecula [source] Expression of ezrin, Bcl-2, and Ki-67 in chondrosarcomasAPMIS, Issue 10 2010MIRVA SÖDERSTRÖM Söderström M, Palokangas T, Vahlberg T, Böhling T, Aro H, Carpen O. Expression of ezrin, Bcl-2, and Ki-67 in chondrosarcomas. APMIS 2010; 118: 769,76. The aim of the present study was to investigate whether the expression of ezrin, a membrane-cytoskeleton linker and regulator of cellular signaling, is associated with clinical features of chondrosarcoma. For this purpose, we studied the expression of ezrin in 54 chondrosarcomas by immunohistochemistry and correlated the expression with other tumor characteristics, markers of proliferation, apoptosis and with clinical parameters. The intensity of ezrin staining increased with the histologic grade, and a significant positive association existed between the tumor grade and ezrin expression (p = 0.0475). In addition, there was a positive correlation between the expression of ezrin and Bcl-2, an anti-apoptotic protein (r = 0.83, p < 0.0001), as well as between ezrin expression and increased proliferation as measured by Ki-67 index (r = 0.70, p < 0.0001). The positive correlation of ezrin expression with Bcl-2 and Ki-67 as well as with tumor grade suggests that an aggressive behavior of chondrosarcoma may be related to activation of ezrin and that ezrin inhibitors could provide a much needed adjuvant therapy in chondrosarcomas. In conclusion, our results indicate that high ezrin expression correlates with aggressive features of chondrosarcomas. Further analyses on the pathways downstream of ezrin are warranted. [source] Interleukin-27 inhibits human osteoclastogenesis by abrogating RANKL-mediated induction of nuclear factor of activated T cells c1 and suppressing proximal RANK signalingARTHRITIS & RHEUMATISM, Issue 2 2010George D. Kalliolias Objective Interleukin-27 (IL-27) has stimulatory and regulatory immune functions and is expressed in rheumatoid arthritis (RA) synovium. This study was undertaken to investigate the effects of IL-27 on human osteoclastogenesis, to determine whether IL-27 can stimulate or attenuate the osteoclast-mediated bone resorption that is a hallmark of RA. Methods Osteoclasts were generated from blood-derived human CD14+ cells. The effects of IL-27 on osteoclast formation were evaluated by counting the number of tartrate-resistant acid phosphatase,positive multinucleated cells and measuring the expression of osteoclast-related genes. The induction of nuclear factor of activated T cells c1 (NFATc1) and the activation of signaling pathways downstream of RANK were measured by immunoblotting. The expression of key molecules implicated in osteoclastogenesis (NFATc1, RANK, costimulatory receptors, and immunoreceptor tyrosine,based activation motif,harboring adaptor proteins) was measured by real-time reverse transcription,polymerase chain reaction. Murine osteoclast precursors obtained from mouse bone marrow and synovial fluid macrophages derived from RA patients were also tested for their responsiveness to IL-27. Results IL-27 inhibited human osteoclastogenesis, suppressed the induction of NFATc1, down-regulated the expression of RANK and triggering receptor expressed on myeloid cells 2 (TREM-2), and inhibited RANKL-mediated activation of ERK, p38, and NF-,B in osteoclast precursors. Synovial fluid macrophages from RA patients were refractory to the effects of IL-27. In contrast to the findings in humans, IL-27 only moderately suppressed murine osteoclastogenesis, and this was likely attributable to low expression of the IL-27 receptor subunit WSX-1 on murine osteoclast precursors. Conclusion IL-27 inhibits human osteoclastogenesis by a direct mechanism that suppresses the responses of osteoclast precursors to RANKL. These findings suggest that, in addition to its well-known antiinflammatory effects, IL-27 plays a homeostatic role in restraining bone erosion. This homeostatic function is compromised under conditions of chronic inflammation such as in RA synovitis. [source] Role of STAT6 and SMAD2 in a model of chronic allergen exposure: a mouse strain comparison studyCLINICAL & EXPERIMENTAL ALLERGY, Issue 1 2009J. A. Hirota Summary Background Asthma is a disease characterized by variable and reversible airway obstruction and is associated with airway inflammation, airway remodelling (including goblet cell hyperplasia, increased collagen deposition and increased smooth muscle mass) and increased airway responsiveness. It is believed that airway inflammation plays a critical role in the development of airway remodelling, with IL-13 and TGF-,1 pathways being strongly associated with the disease progression. Mouse models of asthma are capable of recapitulating some components of asthma and have been used to look at both IL-13 and TGF-,1 pathways, which use STAT6 and SMAD2 signalling molecules, respectively. Objectives Using brief and chronic models of allergen exposure, we utilized BALB/c and C57Bl/6 to explore the hypothesis that observed differences in responses to allergen between these mouse strains will involve fundamental differences in IL-13 and TGF-,1 responses. Methods The following outcome measurements were performed: airway physiology, bronchoalveolar lavage cell counts/cytokine analysis, histology, immunoblots and gene expression assays. Results We demonstrate in BALB/c mice an IL-13-dependent phosphorylation of STAT6, nuclear localized in inflammatory cells, which is associated with indices of airway remodelling and development of airway dysfunction. In BALB/c mice, phosphorylation of SMAD2 is delayed relative to STAT6 activation and also involves an IL-13-dependent mechanism. In contrast, despite an allergen-induced increase in IL-4, IL-13 and eosinophils, C57Bl/6 demonstrates a reduced and distinct pattern of phosphorylated STAT6, no SMAD2 phosphorylation changes and fail to develop indices of remodelling or changes in airway function. Conclusion The activation of signalling pathways and nuclear translocation of signalling molecules downstream of IL-13 and TGF-,1 further support the central role of these molecules in the pathology and dysfunction in animal models of asthma. Activation of signalling pathways downstream from IL-13 and TGF-,1 may be more relevant in disease progression than elevations in airway inflammation alone. [source] |