Pathway Activity (pathway + activity)

Distribution by Scientific Domains


Selected Abstracts


Electronically monitored cowpea aphid feeding behavior on resistant and susceptible lupins

ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA, Issue 3 2001
Geoffrey W. Zehnder
Abstract The feeding behavior of cowpea aphid, Aphis craccivora Koch (Homoptera: Aphididae) was examined on seedlings of narrow leafed lupin, Lupinus angustifolius L., and yellow lupin, L. luteus L., using electronic monitoring of insect feeding behavior (EMIF). Aphid feeding behavior was first compared between resistant (cv. Kalya) and susceptible (cv. Tallerack) varieties of narrow-leafed lupin. Aphids spent significantly more time in non- penetration and stylet pathway activities, and significantly less time in the sieve element phase on Kalya than on Tallerack, suggesting that feeding deterrence is an important component of aphid resistance in Kalya. Aphid feeding on a susceptible yellow lupin variety (cv. Wodjil) was then compared with that on two resistant lines, one (Teo) with high and the other (94D024-1) with low seed alkaloid content. There were no consistent differences in aphid feeding behavior between Wodjil and Teo. Total, mean and percentage sieve element phase times were significantly lower, and total and percentage times in non-phloem phase were greater on 94D024-1 than on Wodjil, suggesting the possibility of phloem-based deterrence in 94D024-1. [source]


Characterization of primary cilia and Hedgehog signaling during development of the human pancreas and in human pancreatic duct cancer cell lines

DEVELOPMENTAL DYNAMICS, Issue 8 2008
Sonja K. Nielsen
Abstract Hedgehog (Hh) signaling controls pancreatic development and homeostasis; aberrant Hh signaling is associated with several pancreatic diseases. Here we investigated the link between Hh signaling and primary cilia in the human developing pancreatic ducts and in cultures of human pancreatic duct adenocarcinoma cell lines, PANC-1 and CFPAC-1. We show that the onset of Hh signaling from human embryogenesis to fetal development is associated with accumulation of Hh signaling components Smo and Gli2 in duct primary cilia and a reduction of Gli3 in the duct epithelium. Smo, Ptc, and Gli2 localized to primary cilia of PANC-1 and CFPAC-1 cells, which may maintain high levels of nonstimulated Hh pathway activity. These findings indicate that primary cilia are involved in pancreatic development and postnatal tissue homeostasis. Developmental Dynamics 237:2039,2052, 2008. © 2008 Wiley-Liss, Inc. [source]


Nucleoredoxin regulates the Wnt/planar cell polarity pathway in Xenopus

GENES TO CELLS, Issue 9 2008
Yosuke Funato
The Wnt signaling pathway is conserved across species, and is essential for early development. We previously identified nucleoredoxin (NRX) as a protein that interacts with dishevelled (Dvl) in vivo to negatively regulate the Wnt/,-catenin pathway. However, whether NRX affects another branch of the Wnt pathway, the Wnt/planar cell polarity (PCP) pathway, remains unclear. Here we show that NRX regulates the Wnt/PCP pathway. In Xenopus laevis, over-expression or depletion of NRX by injection of NRX mRNA or antisense morpholino oligonucleotide, respectively, yields the bent-axis phenotype that is typically observed in embryos with abnormal PCP pathway activity. In co-injection experiments of Dvl and NRX mRNA, NRX suppresses the Dvl-induced bent-axis phenotype. Over-expression or depletion of NRX also suppresses the convergent extension movements that are believed to underlie normal gastrulation. We also found that NRX can inhibit Dvl-induced up-regulation of c-Jun phosphorylation. These results indicate that NRX plays crucial roles in the Wnt/PCP pathway through Dvl and regulates Xenopus gastrulation movements. [source]


Nas transgenic mouse line allows visualization of Notch pathway activity in vivo

GENESIS: THE JOURNAL OF GENETICS AND DEVELOPMENT, Issue 6 2006
Céline Souilhol
Abstract The Notch signaling pathway plays multiple and important roles in mammals. However, several aspects of its action, in particular, the precise mapping of its sites of activity, remain unclear. To address this issue, we generated a transgenic line carrying a construct consisting of a nls-lacZ reporter gene under the control of a minimal promoter and multiple RBP-J, binding sites. Here we show that this transgenic line, which we termed NAS (for Notch Activity Sensor), displays an expression profile that is consistent with current knowledge on Notch activity sites in mice, even though it may not report on all these sites. Moreover, we observe that NAS transgene expression is abolished in a RBP-J,-deficient background, indicating that it indeed requires Notch/RBP-J, signaling pathway activity. Thus, the NAS transgenic line constitutes a valuable and versatile tool to gain further insights into the complex and various functions of the Notch signaling pathway. genesis 44: 277,286, 2006. © 2006 Wiley-Liss, Inc. [source]


Presence of a functional receptor for GLP-1 in osteoblastic cells, independent of the cAMP-linked GLP-1 receptor

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2010
Bernardo Nuche-Berenguer
Glucagon-like peptide 1 (GLP-1) controls glucose metabolism in extrapancreatic tissues through receptors other than the pancreatic cAMP-linked GLP-1 receptor; also, GLP-1 induces an insulin- and PTH-independent bone anabolic action in insulin-resistant and type-2 diabetic rats. Here we searched for the presence and characteristics of GLP-1 receptors in osteoblastic MC3T3-E1 cells. [125I]-GLP-1 specific binding to MC3T3-E1 cells was time- and temperature-dependent, reaching maximal value at 30,min at 25°C; in these conditions, [125I]-GLP-1 binding was dissociable, and displaced by GLP-1, partially by GLP-2, but not by exendin-4 (Ex-4), exendin-9 (Ex-9), glucagon or insulin; Scatchard analysis of the unlabeled GLP-1 data showed high and low affinity binding sites; cross-linking of GLP-1 binding revealed an estimated 70,kDa band, almost undetectable in the presence of 10,6,M GLP-1. GLP-1, Ex-9, insulin or glucagon failed to modify cellular cAMP content, while GLP-2 and Ex-4 increased it. However, GLP-1 induced an immediate hydrolysis of glycosylphosphatidylinositols (GPIs) generating short-lived inositolphosphoglycans (IPGs), and an increase in phosphatidylinositol-3 kinase (PI3K) and mitogen activated protein kinase (MAPK) activities; Ex-4 also affected GPIs, but its action was delayed with respect to that of GLP-1. This incretin was found to decrease Runx2 but increased osteocalcin gene expression, without affecting that of osteoprotegerin or the canonical Wnt pathway activity in MC3T3-E1 cells which do not express the pancreatic GLP-1 receptor. Our data demonstrate for the first time that GLP-1 can directly and functionally interact with osteoblastic cells, possibly through a GPI/IPG-coupled receptor. J. Cell. Physiol. 225: 585,592, 2010. © 2010 Wiley-Liss, Inc. [source]


Tumor suppressor gene Co-operativity in compound Patched1 and suppressor of fused heterozygous mutant mice

MOLECULAR CARCINOGENESIS, Issue 5 2009
Jessica Svärd
Abstract Dysregulation of the Hedgehog signaling pathway is central to the development of certain tumor types, including medulloblastoma and basal cell carcinoma (BCC). Patched1 (Ptch1) and Suppressor of fused (Sufu) are two essential negative regulators of the pathway with tumor suppressor activity. Ptch1+/, mice are predisposed to developing medulloblastoma and rhabdomyosarcoma, while Sufu+/, mice develop a skin phenotype characterized by basaloid epidermal proliferations. Here, we have studied tumor development in Sufu+/,Ptch1+/, mice to determine the effect of compound heterozygosity on the onset, incidence, and spectrum of tumors. We found significantly more (2.3-fold) basaloid proliferations in Sufu+/,Ptch1+/, compared to Sufu+/, female, but not male, mice. For medulloblastoma, the cumulative 1-yr incidence was 1.5-fold higher in Sufu+/,Ptch1+/, compared to Ptch1+/, female mice but this strong trend was not statistically significant. Together this suggests a weak genetic interaction of the two tumor suppressor genes. We noted a few rhabdomyosarcomas and pancreatic cysts in the Sufu+/,Ptch1+/, mice, but the numbers were not significantly different from the single heterozygous mice. Hydrocephalus developed in ,20% of the Ptch1+/, and Sufu+/,Ptch1+/, but not in Sufu+/, mice. Interestingly, most of the medulloblastomas from the Sufu+/,Ptch1+/, mice had lost expression of the remaining Ptch1 wild-type allele but not the Sufu wild-type allele. On the contrary, Sufu as well as Gli1 and Gli2 expression was upregulated in the medulloblastomas compared to adult cerebellum in Ptch1+/, and Sufu+/,Ptch1+/, mice. This suggests that Sufu expression may be regulated by Hedgehog pathway activity and could constitute another negative feedback loop in the pathway. © 2008 Wiley-Liss, Inc. [source]


Hyperglycemia not hypoglycemia alters neuronal dendrites and impairs spatial memory

PEDIATRIC DIABETES, Issue 6 2008
John I Malone
Background/Objective:, We previously reported that chronic hyperglycemia, but not hypoglycemia, was associated with the reduction of neuronal size in the rat brain. We hypothesized that hyperglycemia-induced changes in neuronal structure would have negative consequences, such as impaired learning and memory. We therefore assessed the effects of hyperglycemia and hypoglycemia on neuronal dendritic structure and cognitive functioning in young rats. Design/Methods:, Experimental manipulations were conducted on male Wistar rats for 8 wk, beginning at 4 wk of age. At the completion of the treatments, all rats were trained in the radial-arm water maze, a spatial (hippocampus-dependent) learning and memory task. Three groups of rats were tested: an untreated control group, a streptozotocin-induced diabetic (STZ-D) group, and an intermittent hypoglycemic group. Following behavioral training, the brains of all animals were examined with histologic and biochemical measurements. Results:, Peripheral hyperglycemia was associated with significant increases in brain sorbitol (7.5 ± 1.6 vs. 5.84 ± 1.0 ,M/mg) and inositol (9.6 ± 1.4 vs. 7.1 ± 1.1 ,M/mg) and reduced taurine (0.65 ± 0.1 vs. 1.3 ± 0.1 mg/mg). Histologic evaluation revealed neurons with reduced dendritic branching and spine density in STZ-D rats but not in control or hypoglycemic animals. In addition, the STZ-D group exhibited impaired performance on the water maze memory test. Conclusions:, Hyperglycemia, but not hypoglycemia, was associated with adverse effects on the brain polyol pathway activity, neuronal structural changes, and impaired long-term spatial memory. This finding suggests that the hyperglycemic component of diabetes mellitus has a greater adverse effect on brain functioning than does intermittent hypoglycemia. [source]


Pathogenic T cells in murine lupus exhibit spontaneous signaling activity through phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways

ARTHRITIS & RHEUMATISM, Issue 4 2003
Florin Niculescu
Objective To determine the activation status of two cytoplasmic signaling pathways, phosphatidylinositol 3-kinase (PI 3-kinase) and the mitogen-activated protein kinase (MAPK) family. Methods We studied the pathogenic CD4+ T cells that drive disease in the parent-into-F1 mouse model of lupus-like chronic graft-versus-host disease (GVHD). We determined immunoprecipitated kinase activity for PI 3-kinase and MAPK members (Raf-1, extracellular signal,regulated kinase 1 [ERK-1], c-Jun N-terminal kinase 1 [JNK-1], and p38 MAPK) from either unfractionated splenocytes or purified donor CD4+ T cells. Uninjected normal mice served as negative controls, and acute GVHD mice served as positive controls. Results Compared with negative controls, unfractionated splenocyte kinase activity from chronic GVHD mice was significantly increased for PI 3-kinase and JNK-1, but not for Raf-1, p38 MAPK, or ERK-1. Increased PI 3-kinase and JNK-1 activity was also seen in acute GVHD splenocytes, as was increased Raf-1 and p38 MAPK activity. The pattern of increased PI 3-kinase and JNK-1 activity seen in unfractionated chronic GVHD splenocytes was also seen in isolated donor, but not host, CD4+ T cells from chronic GVHD mice, indicating that donor CD4+ T cell signaling activity accounted for at least a portion of the activity observed in unfractionated splenocytes. Increased ERK-1 activity was not seen in either donor or host CD4+ T cells. This pattern of cytoplasmic signaling pathway in donor CD4+ T cells was associated with increased T cell receptor membrane signaling activation (Lck and Fyn phosphorylation) and increased transcription activation (phosphorylation of inhibitor of nuclear factor ,B), confirming the biologic significance of these observations. Conclusion The pathogenic T cells driving disease in this murine model exhibit activation in the form of spontaneous cytoplasmic signaling pathway activity that can be detected without in vitro restimulation and involves a T cell,specific (PI 3-kinase) and a nonspecific stress/cytokine pathway (JNK-1). These results raise the possibility that a full characterization of the signaling pathways active in pathogenic lupus T cells might lead to new therapeutic targets. [source]