Pathophysiological Situations (pathophysiological + situation)

Distribution by Scientific Domains


Selected Abstracts


Studies of phospholipid oxidation by electrospray mass spectrometry: From analysis in cells to biological effects

BIOFACTORS, Issue 1-4 2005
Corinne M. Spickett
Abstract The oxidation of lipids is important in many pathological conditions and lipid peroxidation products such as 4-hydroxynonenal (HNE) and other aldehydes are commonly measured as biomarkers of oxidative stress. However, it is often useful to complement this with analysis of the original oxidized phospholipid. Electrospray mass spectrometry (ESMS) provides an informative method for detecting oxidative alterations to phospholipids, and has been used to investigate oxidative damage to cells, and low-density lipoprotein, as well as for the analysis of oxidized phosphatidylcholines present in atherosclerotic plaque material. There is increasing evidence that intact oxidized phospholipids have biological effects; in particular, oxidation products of 1-palmitoyl-2-arachidonoyl- sn -glycerophosphocholine (PAPC) have been found to cause inflammatory responses, which could be potentially important in the progression of atherosclerosis. The effects of chlorohydrin derivatives of lipids have been much less studied, but it is clear that free fatty acid chlorohydrins and phosphatidylcholine chlorohydrins are toxic to cells at concentrations above 10 micromolar, a range comparable to that of HNE and oxidized PAPC. There is some evidence that chlorohydrins have biological effects that may be relevant to atherosclerosis, but further work is needed to elucidate their pro-inflammatory properties, and to understand the mechanisms and balance of biological effects that could result from oxidation of complex mixtures of lipids in a pathophysiological situation. [source]


Synergistic inhibitory effect of ascorbic acid and acetylsalicylic acid on prostaglandin E2 release in primary rat microglia

JOURNAL OF NEUROCHEMISTRY, Issue 1 2003
Bernd L. Fiebich
Abstract Ascorbic acid (vitamin C) has been suggested to protect cerebral tissue in a variety of pathophysiological situations such as head trauma, ischemia or Alzheimer's disease. Most of these protective actions have been attributed to the antioxidative capacity of ascorbic acid. Besides the presence of elevated levels of oxygen radicals, prostaglandins produced by neurones and microglial cells seem to play an important role in prolonged tissue damage. We investigated whether ascorbic acid alone inhibits prostaglandin E2 (PGE2) synthesis and may augment the inhibitory effect of acetylsalicylic acid on prostaglandin synthesis. Ascorbic acid dose-dependently inhibited PGE2 synthesis in lipopolysaccharide-treated primary rat microglial cells (IC50 = 3.70 µm). In combination with acetylsalicylic acid (IC50 = 1.85 µm), ascorbic acid augmented the inhibitory effect of acetylsalicylic acid on PGE2 synthesis (IC50 = 0.25 µm in combination with 100 µm ascorbic acid). Ascorbic acid alone or in combination with acetylsalicylic acid did not inhibit cyclooxygenase-2 (COX-2) protein synthesis but inhibited COX-2 enzyme activity. Our results show that ascorbic acid and acetylsalicylic acid act synergistically in inhibiting PGE2 synthesis, which may help to explain a possible protective effect of ascorbic acid in various brain diseases. [source]


Interleukin-1, Induces Cyclooxygenase-2 and Prostaglandin E2 Synthesis in Human Neuroblastoma Cells

JOURNAL OF NEUROCHEMISTRY, Issue 5 2000
Involvement of p38 Mitogen-Activated Protein Kinase, Nuclear Factor-
Abstract: Prostaglandins (PGs), which are generated by the enzymatic activity of cyclooxygenase (COX)-1 and -2, modulate several functions in the CNS such as the generation of fever, the sleep/wake cycle, and the perception of pain. Moreover, the neuronal induction of COX-2 has been linked to neuroinflammatory aspects of Alzheimer's disease (AD). The regulation of COX expression in neuronal cells is only partly understood and has been mainly linked to synaptic activity. In pathophysiological situations, however, cytokines may be potent stimulators of neuronal COX expression. Here we show that interleukin (IL)-1, induces COX-2 mRNA and protein synthesis and the release of PGE2 in the human neuroblastoma cell line SK-N-SH. We further demonstrate that both a free radical scavenger and an inhibitor of p38 mitogen-activated protein kinase (MAPK) reduce IL-1,-induced synthesis of COX-2. IL-1, induces p38 MAPK phosphorylation and activation of the nuclear factor-,B independently from each other. Our data suggest that IL-1,-induced COX-2 expression in SK-N-SH cells is regulated by different mechanisms, presumably involving mRNA transcription and mRNA stability. The ability of p38 MAPK to augment COX-2 expression in human neuroblastoma cells, as shown here, suggests that p38 MAPK may be involved in neuronal expression of COX-2 in AD. [source]


The anti-inflammatory mechanism of 635 nm light-emitting-diode irradiation compared with existing COX inhibitors

LASERS IN SURGERY AND MEDICINE, Issue 7 2007
Wonbong Lim PhD
Abstract Background and Objectives Inhibition of cyclooxygenase (COX) and prostaglandin E2 (PGE2) protects cells against cell injury in specific pathophysiological situations: inflammation and oxidative stress. Although the anti-inflammatory effects have been reported in clinical fields for specific wavelength irradiation during wound healing, the physiological mechanism has not been clarified yet. The aim of the present study is to investigate the anti-inflammatory mechanism of 635 nm light-emitting-diode (LED) irradiation compared with existing COX inhibitors. Study Design/Materials and Methods The present study investigated anti-inflammatory effects of 635 nm irradiation on PGE2 release, COX and phospholipase A2 (PLA2) expression, and reactive oxygen species (ROS) dissociation in arachidonic acid (AA)-treated human gingival fibroblast (hGF). These results were compared with their existing COX inhibitors: indomethacin and ibuprofen. The PGE2 release was measured by enzyme immunoassay, the COX expression was measured by western blot and reverse transcriptase polymerase chain reaction (RT-PCR), and ROS level was measured by flow cytometry, laser scanning confocal microscope and RT-PCR. Results Results showed that 635 nm irradiation and existing COX inhibitors inhibit expression of COX and PGE2 release. Unlike indomethacin and ibuprofen, 635 nm irradiation leads to a decrease of ROS levels and mRNA expression of cytosolic phospholipase A2 (cPLA2) and secretary phospholipase A2 (sPLA2). Conclusion Taken together, 635 nm irradiation, unlike indomethacin and ibuprofen, can directly dissociate the ROS. This inhibits cPLA2, sPLA2, and COX expression, and results in the inhibition of PGE2 release. Thus, we suggest that 635 nm irradiation inhibits PGE2 synthesis like COX inhibitor and appears to be useful as an anti-inflammatory tool. Lesers Surg. Med. 39:614,621, 2007. © 2007 Wiley-Liss, Inc. [source]


Slow Delayed Rectifier Potassium Current (IKs) and the Repolarization Reserve

ANNALS OF NONINVASIVE ELECTROCARDIOLOGY, Issue 1 2007
Norbert Jost Ph.D.
The aim of this review is to present the properties of the slow component of the delayed rectifier potassium current (IKs) in the human ventricle. The review gives a detailed description of the physiology, molecular biology and pharmacology of the IKs current, including kinetic properties, genetic structures, agonists and antagonists. The authors also present the role of the IKs current in the human cardiac repolarization focusing on several pathophysiological situations, such as the LQT syndrome and the Torsade de Pointes arrhythmia. [source]