Patch-clamp Recordings (patch-clamp + recording)

Distribution by Scientific Domains

Kinds of Patch-clamp Recordings

  • whole-cell patch-clamp recording


  • Selected Abstracts


    Persistent rhythmic oscillations induced by nicotine on neonatal rat hypoglossal motoneurons in vitro

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 9 2006
    Nerijus Lamanauskas
    Abstract Patch-clamp recording from hypoglossal motoneurons in neonatal Wistar rat brainstem slices was used to investigate the electrophysiological effects of bath-applied nicotine (10 µm). While nicotine consistently evoked membrane depolarization (or inward current under voltage clamp), it also induced electrical oscillations (3,13 Hz; lasting for , 8.5 min) on 40% of motoneurons. Oscillations required activation of nicotinic receptors sensitive to dihydro-,-erythroidine (0.5 µm) or methyllycaconitine (5 nm), and were accompanied by enhanced frequency of spontaneous glutamatergic events. The slight voltage dependence of oscillations and their block by the gap junction blocker, carbenoxolone, suggest they originate from electrically coupled neurons. Network nicotinic receptors desensitized more slowly than motoneuron ones, demonstrating that network receptors remained active longer to support heightened release of the endogenous glutamate necessary for enhancing the network excitability. The ionotropic glutamate receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), and the group I metabotropic receptor antagonist, (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA), suppressed oscillations, while the NMDA receptor antagonist, d -amino-phosphonovaleriate (APV), produced minimal depression. Nicotine-evoked oscillations constrained spike firing at low rates, although motoneurons could still generate high-frequency trains of action potentials with unchanged gain for input depolarization. This is the first demonstration that persistent activation of nicotinic receptors could cause release of endogenous glutamate to evoke sustained oscillations in the theta frequency range. As this phenomenon likely represented a powerful process to coordinate motor output to tongue muscles, our results outline neuronal nicotinic acetylcholine receptors (nAChRs) as a novel target for pharmacological enhancement of motoneuron output in motor dysfunction. [source]


    Spontaneously active and InsP3 -activated ion channels in cell nuclei from rat cerebellar Purkinje and granule neurones

    THE JOURNAL OF PHYSIOLOGY, Issue 3 2005
    Sergey M. Marchenko
    Increases in Ca2+ concentration in the nucleus of neurones modulate gene transcription and may be involved in activity-dependent long-term plasticity, apoptosis, and neurotoxicity. Little is currently known about the regulation of Ca2+ in the nuclei of neurones. Investigation of neuronal nuclei is hampered by the cellular heterogeneity of the brain where neurones comprise no more than 10% of the cells. The situation is further complicated by large differences in properties of different neurones. Here we report a method for isolating nuclei from identified central neurones. We employed this technique to study nuclei from rat cerebellar Purkinje and granule neurones. Patch-clamp recording from the nuclear membrane of Purkinje neurones revealed numerous large-conductance channels selective for monovalent cations. The nuclear membrane of Purkinje neurones also contained multiple InsP3 - activated ion channels localized exclusively in the inner nuclear membrane with their receptor loci facing the nucleoplasm. In contrast, the nuclear membrane of granule neurones contained only a small number of mainly anion channels. Nuclear InsP3 receptors (InsP3Rs) were activated by InsP3 with EC50= 0.67 ,m and a Hill coefficient of 2.5. Ca2+ exhibited a biphasic effect on the receptors elevating its activity at low concentrations and inhibiting it at micromolar concentrations. InsP3 in saturating concentrations did not prevent the inhibitory effect of Ca2+, but strongly increased InsP3R activity at resting Ca2+ concentrations. These data are the first evidence for the presence of intranuclear sources of Ca2+ in neurones. Ca2+ release from the nuclear envelope may amplify Ca2+ transients penetrating the nucleus from the cytoplasm or generate Ca2+ transients in the nucleus independently of the cytoplasm. [source]


    Neuronal coupling via connexin36 contributes to spontaneous synaptic currents of striatal medium-sized spiny neurons

    JOURNAL OF NEUROSCIENCE RESEARCH, Issue 10 2008
    Damian M. Cummings
    Abstract Gap junctions provide a means for electrotonic coupling between neurons, allowing for the generation of synchronous activity, an important contributor to learning and memory. Connexin36 (Cx36) is largely neuron specific and provides a target for genetic manipulation to determine the physiological relevance of neuronal coupling. Within the striatum, Cx36 is more specifically localized to the interneuronal population, which provides the main inhibitory input to the principal projection medium-sized spiny neurons. In the present study, we examined the impact of genetic ablation of Cx36 on striatal spontaneous synaptic activity. Patch-clamp recordings were performed from medium-sized spiny neurons, the primary target of interneurons. In Cx36 knockout mice, the frequencies of both excitatory and inhibitory spontaneous postsynaptic currents were reduced. We also showed that activation of dopamine receptors differentially modulated the frequency of GABAergic currents in Cx36 knockout mice compared with their wild-type littermates, suggesting that dopamine plays a role in altering the coupling of interneurons. Taken together, the present findings demonstrate that electrical coupling of neuronal populations is important for the maintenance of normal chemical synaptic interactions within the striatum. © 2008 Wiley-Liss, Inc. [source]


    Acute action of rotenone on nigral dopaminergic neurons , involvement of reactive oxygen species and disruption of Ca2+ homeostasis

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2009
    Peter S. Freestone
    Abstract Rotenone is a toxin used to generate animal models of Parkinson's disease; however, the mechanisms of toxicity in substantia nigra pars compacta (SNc) neurons have not been well characterized. We have investigated rotenone (0.05,1 ,m) effects on SNc neurons in acute rat midbrain slices, using whole-cell patch-clamp recording combined with microfluorometry. Rotenone evoked a tolbutamide-sensitive outward current (94 ± 15 pA) associated with increases in intracellular [Ca2+] ([Ca2+]i) (73.8 ± 7.7 nm) and intracellular [Na+] (3.1 ± 0.6 mm) (all with 1 ,m). The outward current was not affected by a high ATP level (10 mm) in the patch pipette but was decreased by Trolox. The [Ca2+]i rise was abolished by removing extracellular Ca2+, and attenuated by Trolox and a transient receptor potential M2 (TRPM2) channel blocker, N -(p -amylcinnamoyl) anthranilic acid. Other effects included mitochondrial depolarization (rhodamine-123) and increased mitochondrial reactive oxygen species (ROS) production (MitoSox), which was also abolished by Trolox. A low concentration of rotenone (5 nm) that, by itself, did not evoke a [Ca2+]i rise resulted in a large (46.6 ± 25.3 nm) Ca2+ response when baseline [Ca2+]i was increased by a ,priming' protocol that activated voltage-gated Ca2+ channels. There was also a positive correlation between ,naturally' occurring variations in baseline [Ca2+]i and the rotenone-induced [Ca2+]i rise. This correlation was not seen in non-dopaminergic neurons of the substantia nigra pars reticulata (SNr). Our results show that mitochondrial ROS production is a key element in the effect of rotenone on ATP-gated K+ channels and TRPM2-like channels in SNc neurons, and demonstrate, in these neurons (but not in the SNr), a large potentiation of rotenone-induced [Ca2+]i rise by a small increase in baseline [Ca2+]i. [source]


    Differential responses to NMDA receptor activation in rat hippocampal interneurons and pyramidal cells may underlie enhanced pyramidal cell vulnerability

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2005
    E. Avignone
    Abstract Hippocampal interneurons are generally more resistant than pyramidal cells to excitotoxic insults. Because NMDA receptors play a crucial role in neurodegeneration, we have compared the response to exogenous NMDA in CA1 pyramidal cells and interneurons of the stratum oriens using combined whole-cell patch-clamp recording and ratiometric Ca2+ imaging. In voltage-clamp, current-clamp or in nominally Mg2+ -free medium, NMDA (10 µm; 3,5 min exposure in the presence of tetrodotoxin) induced a markedly larger inward current and Ca2+ rise in pyramidal cells than in interneurons. Pyramidal cells also showed a more pronounced voltage dependence in their response to NMDA. We hypothesized that this enhanced response to NMDA receptor activation in pyramidal cells could underlie their increased vulnerability to excitotoxicity. Using loss of dye as an indicator of degenerative membrane disruption, interneurons tolerated continuous exposure to a high concentration of NMDA (30 µm) for longer periods than pyramidal cells. This acute neurodegeneration in pyramidal cells was independent of intracellular Ca2+, because high intracellular BAPTA (20 mm) did not prolong survival time. Thus, a plausible explanation for the enhanced sensitivity of pyramidal neurons to excitotoxic insults associated with cerebral ischemia is their greater response to NMDA receptor activation, which may reflect differences in NMDA receptor expression and/or subunit composition. [source]


    Differential modulation of AMPA receptors by cyclothiazide in two types of striatal neurons

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2000
    Vladimir S. Vorobjev
    Abstract The modulation of ,-amino-3-hydroxy-5-methyl-4-isoxazol-propionate (AMPA) receptor-mediated currents by cyclothiazide was investigated in acutely isolated cells from rat striatum with whole-cell patch-clamp recording. Single-cell reverse transcriptase-polymerase chain reaction (RT-PCR) was used to identify medium spiny and giant aspiny neurons and to determine their AMPA receptor subunit composition mostly in separate experiments. After pretreatment with cyclothiazide, kainate-induced AMPA responses were more strongly potentiated in medium spiny than in giant aspiny neurons; cyclothiazide induced a ninefold leftward shift in the kainate concentration,response curve for medium spiny neurons (not giant aspiny neurons). The EC50s for the cyclothiazide potentiation did not differ substantially between medium spiny neurons and giant aspiny neurons. The recovery of kainate-activated currents from modulation by cyclothiazide was slower for medium spiny neurons than for giant aspiny neurons. Medium spiny neurons expressed GluR-A, GluR-B and GluR-C, but not GluR-D subunits in both flip and flop splice variants. All giant aspiny neurons expressed GluR-A and GluR-D, exclusively in the flop form, half of them also expressed GluR-B and GluR-C. This is in keeping with slow and fast desensitization kinetics in medium spiny neurons and giant aspiny neurons, respectively, and differences in cyclothiazide modulation. The rate of cyclothiazide dissociation from the AMPA receptor, activated by glutamate, was ,,90 times slower in medium spiny neurons than in giant aspiny neurons. In giant aspiny neurons (not medium spiny neurons) this rate was strongly dependent on the presence of an agonist; 1 m m glutamate increased it 30-fold. Thus, two major cell groups in the striatum display distinct AMPA receptor compositions carrying specific properties of glutamate responses. Excitatory transmission will thus be differentially affected by cyclothiazide-type compounds. [source]


    Molecular cloning and functional expression of a gene encoding an antiarrhythmia peptide derived from the scorpion toxin

    FEBS JOURNAL, Issue 18 2002
    Fang Peng
    From a cDNA library of Chinese scorpion Buthus martensii Karsch, full-length cDNAs of 351 nucleotides encoding precursors (named BmKIM) that contain signal peptides of 21 amino acid residues, a mature toxin of 61 residues with four disulfide bridges, and an extra Gly-Lys-Lys tail, were isolated. The genomic sequence of BmKIM was cloned and sequenced; it consisted of two exons disrupted by an intron of 1622 bp, the largest known in scorpion toxin genomes, inserted in the region encoding the signal peptide. The cDNA was expressed in Escherichia coli. The recombinant BmKIM was toxic to both mammal and insects. This is the first report that a toxin with such high sequence homology with an insect-specific depressant toxin group exhibits toxicity to mammals. Using whole cell patch-clamp recording, it was discovered that the recombinant BmKIM inhibited thesodium current in rat dorsal root ganglion neurons andventricular myocytes and protected against aconitine- induced cardiac arrhythmia. [source]


    Interstitial cells in the vasculature

    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 2 2005
    M. I. Harhun
    Abstract Interstitial cells of Cajal are believed to play an important role in gastrointestinal tissues by generating and propagating electrical slow waves to gastrointestinal muscles and/or mediating signals from the enteric nervous system. Recently cells with similar morphological characteristics have been found in the wall of blood vessels such as rabbit portal vein and guinea pig mesenteric artery. These non-contractile cells are characterised by the presence of numerous processes and were easily detected in the wall of the rabbit portal vein by staining with methylene blue or by antibodies to the marker of Interstitial Cells of Cajal c-kit. These vascular cells have been termed "interstitial cells" by analogy with interstitial cells found in the gastrointestinal tract. Freshly dispersed interstitial cells from rabbit portal vein and guinea pig mesenteric artery displayed various Ca2+ -release events from endo/sarcoplasmic reticulum including fast localised Ca2+ transients (Ca2+ sparks) and longer and slower Ca2+ events. Single interstitial cells from the rabbit portal vein, which is a spontaneously active vessel, also demonstrated rhythmical Ca2+ oscillations associated with membrane depolarisations, which suggests that in this vessel interstitial cells may act as pacemakers for smooth muscle cells. The function of interstitial cells from the mesenteric arteries is yet unknown. This article reviews some of the recent findings regarding interstitial cells from blood vessels obtained by our laboratory using electron microscopy, immunohistochemistry, tight-seal patch-clamp recording, and fluorescence confocal imaging techniques. [source]


    Electrophysiological Identification of the Functional Presynaptic Nerve Terminals on an Isolated Single Vasopressin Neurone of the Rat Supraoptic Nucleus

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 5 2010
    T. Ohbuchi
    Release of arginine vasopressin (AVP) and oxytocin from magnocellular neurosecretory cells (MNCs) of the supraoptic nucleus (SON) is under the control of glutamate-dependent excitation and GABA-dependent inhibition. The possible role of the synaptic terminals attached to SON neurones has been investigated using whole-cell patch-clamp recording in in vitro rat brain slice preparations. Recent evidence has provided new insights into the repercussions of glial environment modifications on the physiology of MNCs at the synaptic level in the SON. In the present study, excitatory glutamatergic and inhibitory GABAergic synaptic inputs were recorded from an isolated single SON neurone cultured for 12 h, using the whole-cell patch clamp technique. Neurones expressed an AVP-enhanced green fluorescent protein (eGFP) fusion gene in MNCs. In addition, native synaptic terminals attached to a dissociated AVP-eGFP neurone were visualised with synaptic vesicle markers. These results suggest that the function of presynaptic nerve terminals may be evaluated directly in a single AVP-eGFP neurone. These preparations would be helpful in future studies aiming to electrophysiologically distinguish between the functions of synaptic terminals and glial modifications in the SON neurones. [source]


    A novel Nav1.7 mutation producing carbamazepine-responsive erythromelalgia,

    ANNALS OF NEUROLOGY, Issue 6 2009
    Tanya Z. Fischer MD
    Objective Human and animal studies have shown that Nav1.7 sodium channels, which are preferentially expressed within nociceptors and sympathetic neurons, play a major role in inflammatory and neuropathic pain. Inherited erythromelalgia (IEM) has been linked to gain-of-function mutations of Nav1.7. We now report a novel mutation (V400M) in a three-generation Canadian family in which pain is relieved by carbamazepine (CBZ). Methods We extracted genomic DNA from blood samples of eight members of the family, and the sequence of SCN9A coding exons was compared with the reference Nav1.7 complementary DNA. Wild-type Nav1.7 and V400M cell lines were then analyzed using whole-cell patch-clamp recording for changes in activation, deactivation, steady-state inactivation, and ramp currents. Results Whole-cell patch-clamp studies of V400M demonstrate changes in activation, deactivation, steady-state inactivation, and ramp currents that can produce dorsal root ganglia neuron hyperexcitability that underlies pain in these patients. We show that CBZ, at concentrations in the human therapeutic range, normalizes the voltage dependence of activation and inactivation of this inherited erythromelalgia mutation in Nav1.7 but does not affect these parameters in wild-type Nav1.7. Interpretation Our results demonstrate a normalizing effect of CBZ on mutant Nav1.7 channels in this kindred with CBZ-responsive inherited erythromelalgia. The selective effect of CBZ on the mutant Nav1.7 channel appears to explain the ameliorative response to treatment in this kindred. Our results suggest that functional expression and pharmacological studies may provide mechanistic insights into hereditary painful disorders. Ann Neurol 2009;65:733,741 [source]


    FORMALIN-INDUCED INCREASE IN P2X3 RECEPTOR EXPRESSION IN DORSAL ROOT GANGLIA: IMPLICATIONS FOR NOCICEPTION

    CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 8 2009
    Ai-Hua Pan
    SUMMARY 1ATP-gated P2X receptors in nociceptive sensory neurons participate in the transmission of pain signals from the periphery to the spinal cord. The effect of formalin on the expression of P2X3 receptors in dorsal root ganglia (DRG) was characterized using molecular and immunological approaches and the patch-clamp technique. 2Adult Sprague-Dawley rats were injected with 100 µL of 5% formalin in the planar surface of the hindpaw and were killed 30 min and 1, 3, 6, 12, 24 and 48 h later for in vitro analyses. The expression and distribution of P2X3 receptors in the lumbar spinal cord and in L5/L6 DRG were examined; 24 and 48 h after formalin injection, currents in neurons were examined using whole-cell patch-clamp recording. 3Western blots showed that anti-P2X3 antibody recognized a major monomer of approximately 64 kDa in DRG. Immunoreactivity for P2X3 receptors was detected predominantly in the cytoplasm and plasma membrane of small (< 25 µm) and middle-sized (25,50 µm) DRG neurons. Expression of the P2X3 transcript in the DRG was unchanged 30 min and 1 h after formalin injection, but increased after 12 h. There was no distinct change in P2X3 immunostaining of the spinal cord lamina at 30 min or 1 h after injection, but after 24 h P2X3 labelling increased. At 24 h after the formalin injection, currents in isolated small and middle-sized DRG neurons were increased by 1 µmol/L ,,,-methylene-ATP. These currents were completely inhibited by 1 µmol/L A-317491, a potent and selective P2X3 receptor antagonist. 4These data suggest that formalin injection leads to early upregulation of P2X3 expression in the spinal cord and DRG and that this may be one of the mechanisms giving rise to nociception. [source]


    Developmental shift in bidirectional functions of taurine-sensitive chloride channels during cortical circuit formation in postnatal mouse brain

    DEVELOPMENTAL NEUROBIOLOGY, Issue 2 2004
    Mika Yoshida
    Abstract Taurine (2-aminoethanesulfonic acid) is the most abundant free amino acid in the developing mammalian cerebral cortex, however, few studies have reported its neurobiological functions during development. In this study, by means of whole-cell patch-clamp recordings, we examined the effects of taurine on chloride channel receptors in neocortical neurons from early to late postnatal stages, which cover a critical period in cortical circuit formation. We show here that taurine activates chloride channels in cortical neurons throughout the postnatal stages examined (from postnatal day 2 to day 36). The physiological effects of taurine changed from excitatory to inhibitory due to variations in the intracellular Cl, concentration during development. An antagonist blocking analysis also demonstrated a developmental shift in the receptor target of taurine, from glycine receptors to GABAA receptors. Taken together, these results may reflect genetically programmed, bidirectional functions of taurine. At the early developmental stage, taurine acting on glycine receptors would serve to promote cortical circuit formation. As cortical circuit has to be regulated in the later stages, taurine would serve as a safeguard against hyperexcitable circuit. © 2004 Wiley Periodicals, Inc. J Neurobiol 60: 166,175, 2004 [source]


    Intracellular Calcium Increase in Epileptiform Activity: Modulation by Levetiracetam and Lamotrigine

    EPILEPSIA, Issue 7 2004
    Antonio Pisani
    Summary:,Purpose: Alterations in neuronal calcium (Ca2+) homeostasis are believed to play an essential role in the generation and propagation of epileptiform events. Levetiracetam (LEV) and lamotrigine (LTG), novel antiepileptic drugs (AEDs), were tested on epileptiform events and the corresponding elevations in intracellular Ca2+ concentration ([Ca2+]i) recorded from rat neocortical slices. Methods: Electrophysiological recordings were performed from single pyramidal neurons from a slice preparation. Spontaneous epileptiform events consisting of long-lasting, repetitive paroxysmal depolarization shifts (PDSs) and interictal spike activity were induced by reducing the magnesium concentration from the solution and by adding bicuculline and 4-aminopyridine. Simultaneously, microfluorimetric measurements of [Ca2+]i were performed. Optical imaging with Ca2+ indicators revealed a close correlation between Ca2+ transients and epileptiform events. Results: Both LEV and LTG were able to reduce both amplitude and duration of PDSs, as well as the concomitant elevation in [Ca2+]i, in a dose-dependent fashion. Whole-cell patch-clamp recordings from isolated neocortical neurons revealed that LEV significantly reduced N-, and partially P/Q-type high-voltage-activated (HVA) Ca2+ currents, whereas sodium currents were unaffected. Interestingly, the inhibitory effects of LEV were mimicked and occluded by LTG or by a combination of ,-conotoxin GVIA and ,-agatoxin IVA, selective blockers of N- and P/Q-type HVA channels, respectively, suggesting a common site of action for these AEDs. Conclusions: These results demonstrate that large, transient elevations in neuronal [Ca2+]i correlate to epileptiform discharges. The antagonistic effects of LEV and LTG on [Ca2+]i overload might represent the basis for their anticonvulsant efficacy and could preserve neuronal viability. [source]


    N -methyl- d -aspartate, hyperpolarization-activated cation current (Ih) and ,-aminobutyric acid conductances govern the risk of epileptogenesis following febrile seizures in rat hippocampus

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2010
    Mohamed Ouardouz
    Abstract Febrile seizures are the most common types of seizure in children, and are generally considered to be benign. However, febrile seizures in children with dysgenesis have been associated with the development of temporal lobe epilepsy. We have previously shown in a rat model of dysgenesis (cortical freeze lesion) and hyperthermia-induced seizures that 86% of these animals developed recurrent seizures in adulthood. The cellular changes underlying the increased risk of epileptogenesis in this model are not known. Using whole cell patch-clamp recordings from CA1 hippocampal pyramidal cells, we found a more pronounced increase in excitability in rats with both hyperthermic seizures and dysgenesis than in rats with hyperthermic seizures alone or dysgenesis alone. The change was found to be secondary to an increase in N -methyl- d -aspartate (NMDA) receptor-mediated excitatory postsynaptic currents (EPSCs). Inversely, hyperpolarization-activated cation current was more pronounced in naïve rats with hyperthermic seizures than in rats with dysgenesis and hyperthermic seizures or with dysgenesis alone. The increase in GABAA -mediated inhibition observed was comparable in rats with or without dysgenesis after hyperthermic seizures, whereas no changes were observed in rats with dysgenesis alone. Our work indicates that in this two-hit model, changes in NMDA receptor-mediated EPSCs may facilitate epileptogenesis following febrile seizures. Changes in the hyperpolarization-activated cation currents may represent a protective reaction and act by damping the NMDA receptor-mediated hyperexcitability, rather than converting inhibition into excitation. These findings provide a new hypothesis of cellular changes following hyperthermic seizures in predisposed individuals, and may help in the design of therapeutic strategies to prevent epileptogenesis following prolonged febrile seizures. [source]


    A novel role for MNTB neuron dendrites in regulating action potential amplitude and cell excitability during repetitive firing

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2008
    Richardson N. Leão
    Abstract Principal cells of the medial nucleus of the trapezoid body (MNTB) are simple round neurons that receive a large excitatory synapse (the calyx of Held) and many small inhibitory synapses on the soma. Strangely, these neurons also possess one or two short tufted dendrites, whose function is unknown. Here we assess the role of these MNTB cell dendrites using patch-clamp recordings, imaging and immunohistochemistry techniques. Using outside-out patches and immunohistochemistry, we demonstrate the presence of dendritic Na+ channels. Current-clamp recordings show that tetrodotoxin applied onto dendrites impairs action potential (AP) firing. Using Na+ imaging, we show that the dendrite may serve to maintain AP amplitudes during high-frequency firing, as Na+ clearance in dendritic compartments is faster than axonal compartments. Prolonged high-frequency firing can diminish Na+ gradients in the axon while the dendritic gradient remains closer to resting conditions; therefore, the dendrite can provide additional inward current during prolonged firing. Using electron microscopy, we demonstrate that there are small excitatory synaptic boutons on dendrites. Multi-compartment MNTB cell simulations show that, with an active dendrite, dendritic excitatory postsynaptic currents (EPSCs) elicit delayed APs compared with calyceal EPSCs. Together with high- and low-threshold voltage-gated K+ currents, we suggest that the function of the MNTB dendrite is to improve high-fidelity firing, and our modelling results indicate that an active dendrite could contribute to a ,dual' firing mode for MNTB cells (an instantaneous response to calyceal inputs and a delayed response to non-calyceal dendritic excitatory postsynaptic potentials). [source]


    Inhibition of superior colliculus neurons by a GABAergic input from the pretectal nuclear complex in the rat

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2004
    Gesche Born
    Abstract The mammalian pretectal nuclear complex (PNC) is a visual and visuomotor control structure which is strongly connected to other subcortical visual structures. This indicates that the PNC also controls subcortical visual information flow during the execution of various oculomotor programs. A prominent, presumably GABAergic, projection from the PNC targets the superficial grey layer of the superior colliculus (SC), which itself is a central structure for visual information processing necessary for the generation of saccadic eye movements. In order to characterize the pretecto-tectal projection in vitro, we performed whole-cell patch-clamp recordings from SC and PNC neurons in slices obtained from 3,6-week-old pigmented rats. Focal glutamate injections into the PNC and electrical PNC stimulation were used to induce postsynaptic responses in SC neurons. Electrical stimulation of the SC allowed electrophysiological identification of PNC neurons that provide the inhibitory pretecto-tectal input. Only inhibitory postsynaptic currents could be elicited in SC neurons both by pharmacological and by electrical activation of the ipsilateral PNC. Concomitantly, a small number of PNC neurons could be antidromically activated from the ipsilateral SC. Most SC cells postsynaptic to the prectectal input showed the dendritic morphology of wide-field and narrow-field cells and are therefore regarded as projection neurons. All inhibitory currents evoked by PNC activation could be completely blocked by bath application of the selective GABAA receptor antagonist bicuculline. Together these results indicate that SC projection neurons receive a direct inhibitory input from the ipsilateral PNC and that this input is mediated by GABAA receptors. [source]


    Background potassium channel block and TRPV1 activation contribute to proton depolarization of sensory neurons from humans with neuropathic pain

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2004
    Thomas K. Baumann
    Abstract Protons cause a sustained depolarization of human dorsal root ganglion (DRG) neurons [Baumann et al. (1996) Pain, 65, 31,38]. In the present study we sought to determine which ion channels are expressed in human DRG neurons that could mediate the sustained responses observed in the patch-clamp recordings. RT-PCR of material from the DRG tissue revealed the presence of mRNAs for a nonselective cation channel that is activated by protons (TRPV1) and background potassium channels that are blocked by protons (TASK-1, TASK-3 and Kir2.3). Highly acidic solution (pH 5.4) applied to cultured DRG neurons evoked prolonged currents that were associated with a net increase in membrane conductance. Consistent with the involvement of TRPV1, these proton-evoked currents were blocked by capsazepine and were only found in neurons that responded to capsaicin with an increase in membrane conductance. Less acidic extracellular solution (pH 6.0) evoked such currents only rarely, but was able to strongly enhance the currents evoked by capsaicin. Capsazepine (1 µm) blocked the currents evoked by capsaicin at pH 7.35, as well as the potentiated responses to capsaicin at pH 6.0. In neurons that were not excited by capsaicin, moderate extracellular acidification (pH 6.0) caused a sustained decrease in resting membrane conductance. The decrease in membrane conductance by protons was associated with inhibition of background potassium channels. This excitatory effect of protons was not blocked by capsazepine. We conclude that in most neurons the sustained depolarization in response to moderately acidic solutions is the result of blocked background potassium channels. In a subset of neurons, TRPV1 also contributes. [source]


    Xenopus embryonic spinal neurons recorded in situ with patch-clamp electrodes , conditional oscillators after all?

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2003
    Simon P. Aiken
    Abstract The central pattern generator for swimming Xenopus embryo is organized as two half-centres linked by reciprocal inhibition. Microelectrode recordings suggest that Xenopus neurons are poorly excitable, necessitating a key role for postinhibitory rebound in the operation of the central pattern generator. However the Xenopus central pattern generator seems unusual in that the component neurons apparently have no intrinsic or conditional rhythmogenic properties. We have re-examined the firing properties of Xenopus embryo spinal neurons by making patch-clamp recordings in situ from intact spinal cord. Recordings made from 99 neurons were divided into three groups. Central pattern generator neurons overwhelmingly (44/51) fired trains of action potentials in response to current injection. Just over half of the sensory interneurons (13/22) also fired trains of action potentials. Neurons that received no synaptic inputs during swimming mostly fired just one or two action potentials (22/26). Thirty-four neurons were identified morphologically. Commissural (8/12) and descending (6/6) interneurons, key components of the spinal central pattern generator, fired repetitive trains of action potentials during current injection. Neurons that were not part of the central pattern generator did not demonstrate this preponderance for repetitive firing. Analysis of the interspike intervals during current injection revealed that the majority of central pattern generators, descending and commissural interneurons, could readily fire at frequencies up to twice that of swimming. We suggest that Xenopus neurons can be considered as conditional oscillators: in the presence of unpatterned excitation they exhibit an ability to fire rhythmically. This property makes the Xenopus embryonic central pattern generator more similar to other model central pattern generators than has hitherto been appreciated. [source]


    No evidence for calcium electrogenic exchanger in frog semicircular canal hair cells

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 9 2002
    M. Martini
    Abstract We investigated the possibility that, in hair cells mechanically isolated from frog semicircular canals, Ca2+ extrusion occurs via a Na+ : Ca2+ (cardiac type) or a Na+ : Ca2+,K+ (retinal type) exchanger. Cells concurrently imaged during whole-cell patch-clamp recordings using the Ca2+ sensitive fluorescent dye Oregon Green 488 BAPTA-1 (100 µm) showed no voltage dependence of Ca2+ clearance dynamics following a Ca2+ load through voltage-gated Ca2+ channels. Reverse exchange was probed in hair cells dialyzed with a Ca2+ - and K+ -free solution, containing a Na+ concentration that saturates the exchanger, after zeroing the contribution to the whole-cell current from Ca2+ and K+ conductances. In these conditions, no reverse exchange current was detected upon switching from a Ca2+ -free external solution to a solution containing concentrations of Ca2+ alone, or Ca2+ + K+ that saturated the exchanger. By contrast, the same experimental protocol elicited peak exchange currents exceeding 100 pA in gecko rod photoreceptors, used as positive controls. In both cell types, we also probed the forward mode of the exchanger by rapidly increasing the intracellular Ca2+ concentration using flash photolysis of two novel caged Ca2+ complexes, calcium 2,2,-{[1-(2-nitrophenyl)ethane-1,2-diyl]bis(oxy)}bis(acetate) and calcium 2,2,-{[1-(4,5-dimethoxy-2-nitrophenyl)ethane-1,2-diyl]bis(oxy)} bis(acetate), in the presence of internal K+ and external Na+. No currents were evoked by UV-triggered Ca2+ jumps in hair cells, whereas exchanger conformational currents up to 400 pA, followed by saturating forward exchange currents up to 40 pA, were recorded in rod photoreceptors subjected to the same experimental conditions. We conclude that no functional electrogenic exchanger is present in this hair cell population, which leaves the abundant plasma membrane Ca2+ -ATPases as the primary contributors to Ca2+ extrusion. [source]


    Differential sensitivity of medium- and large-sized striatal neurons to NMDA but not kainate receptor activation in the rat

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2001
    Carlos Cepeda
    Abstract Infrared videomicroscopy and differential interference contrast optics were used to identify medium- and large-sized neurons in striatal slices from young rats. Whole-cell patch-clamp recordings were obtained to compare membrane currents evoked by application of N -methyl- d -aspartate (NMDA) and kainate. Inward currents and current densities induced by NMDA were significantly smaller in large- than in medium-sized striatal neurons. The negative slope conductance for NMDA currents was greater in medium- than in large-sized neurons and more depolarization was required to remove the Mg2+ blockade. In contrast, currents induced by kainate were significantly greater in large-sized neurons whilst current densities were approximately equal in both cell types. Spontaneous excitatory postsynaptic currents occurred frequently in medium-sized neurons but were relatively infrequent in large-sized neurons. Excitatory postsynaptic currents evoked by electrical stimulation were smaller in large- than in medium-sized neurons. A final set of experiments assessed a functional consequence of the differential sensitivity of medium- and large-sized neurons to NMDA. Cell swelling was used to examine changes in somatic area in both neuronal types after prolonged application of NMDA or kainate. NMDA produced a time-dependent increase in somatic area in medium-sized neurons whilst it produced only minimal changes in large interneurons. In contrast, application of kainate produced significant swelling in both medium- and large-sized cells. We hypothesize that reduced sensitivity to NMDA may be due to variations in receptor subunit composition and/or the relative density of receptors in the two cell types. These findings help define the conditions that put neurons at risk for excitotoxic damage in neurological disorders. [source]


    An essential role for the H218/AGR16/Edg-5/LPB2 sphingosine 1-phosphate receptor in neuronal excitability

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2001
    A. John MacLennan
    Abstract A wealth of indirect data suggest that the H218/AGR16/Edg-5/LPB2 sphingosine 1-phosphate (S1P) receptor plays important roles in development. In vitro, it activates several forms of development-related signal transduction and regulates cellular proliferation, differentiation and survival. It is expressed during embryogenesis, and mutation of an H218 -like gene in zebrafish leads to profound defects in embryonic development. Nevertheless, the in vivo functions served by H218 signalling have not been directly investigated. We report here that mice in which the H218 gene has been disrupted are unexpectedly born with no apparent anatomical or physiological defects. In addition, no abnormalities were observed in general neurological development, peripheral axon growth or brain structure. However, between 3 and 7 weeks of age, H218,/, mice have seizures which are spontaneous, sporadic and occasionally lethal. Electroencephalographic abnormalities were identified both during and between the seizures. At a cellular level, whole-cell patch-clamp recordings revealed that the loss of H218 leads to a large increase in the excitability of neocortical pyramidal neurons. Therefore, H218 plays an essential, unanticipated and functionally important role in the proper development and/or mediation of neuronal excitability. [source]


    The retrograde inhibition of IPSCs in rat cerebellar Purkinje cells is highly sensitive to intracellular Ca2+

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2000
    Maike Glitsch
    Abstract The Ca2+ -dependent retrograde inhibition of inhibitory postsynaptic currents (depolarization-induced-suppression of inhibition; DSI) was investigated using fura-2 Ca2+ measurements and whole-cell patch-clamp recordings in rat cerebellar Purkinje cells. DSI was studied in cells loaded with different concentrations of the Ca2+ chelators BAPTA and EGTA. A concentration of 40 m m BAPTA was required to significantly interfere with DSI, whereas 10 m m BAPTA was almost ineffective. 40 m m EGTA reduced DSI, but was less effective than 40 m m BAPTA. Ratiometric Ca2+ measurements indicated that the extent of DSI depended critically on the changes in intracellular calcium ([Ca2+]i). The relationship between DSI and peak ,[Ca2+]i could be approximated by a hyperbolic function, with apparent half-saturation concentrations of 200 and 40 n m for dendritic and somatic [Ca2+]i, respectively. It is suggested that DSI is due to somatodendritic exocytosis of a retrograde messenger, and that this exocytosis is highly sensitive to [Ca2+]i. [source]


    Voltage- and Ca2+ -activated potassium channels in Ca2+ store control Ca2+ release

    FEBS JOURNAL, Issue 15 2006
    Masayuki Yamashita
    Ca2+ release from Ca2+ stores is a ,quantal' process; it terminates after a rapid release of stored Ca2+. To explain the quantal nature, it has been supposed that a decrease in luminal Ca2+ acts as a ,brake' on store release. However, the mechanism for the attenuation of Ca2+ efflux remains unknown. We show that Ca2+ release is controlled by voltage- and Ca2+ -activated potassium channels in the Ca2+ store. The potassium channel was identified as the big or maxi-K (BK)-type, and was activated by positive shifts in luminal potential and luminal Ca2+ increases, as revealed by patch-clamp recordings from an exposed nuclear envelope. The blockage or closure of the store BK channel due to Ca2+ efflux developed lumen-negative potentials, as revealed with an organelle-specific voltage-sensitive dye [DiOC5(3); 3,3'-dipentyloxacarbocyanine iodide], and suppressed Ca2+ release. The store BK channels are reactivated by Ca2+ uptake by Ca2+ pumps regeneratively with K+ entry to allow repetitive Ca2+ release. Indeed, the luminal potential oscillated bistably by ,45 mV in amplitude. Our study suggests that Ca2+ efflux-induced store BK channel closures attenuate Ca2+ release with decreases in counter-influx of K+. [source]


    Adenosine inhibits paraventricular pre-sympathetic neurons through ATP-dependent potassium channels

    JOURNAL OF NEUROCHEMISTRY, Issue 2 2010
    De-Pei Li
    J. Neurochem. (2010) 113, 530,542. Abstract Adenosine produces cardiovascular depressor effects in various brain regions. However, the cellular mechanisms underlying these effects remain unclear. The pre-sympathetic neurons in the hypothalamic paraventricular nucleus (PVN) play an important role in regulating arterial blood pressure and sympathetic outflow through projections to the spinal cord and brainstem. In this study, we performed whole-cell patch-clamp recordings on retrogradely labeled PVN neurons projecting to the intermediolateral cell column of the spinal cord in rats. Adenosine (10,100 ,M) decreased the firing activity in a concentration-dependent manner, with a marked hyperpolarization in 12 of 26 neurons tested. Blockade of A1 receptors with the adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine or intracellular dialysis of guanosine 5,- O -(2-thodiphosphate) eliminated the inhibitory effect of adenosine on labeled PVN neurons. Immunocytochemical labeling revealed that A1 receptors were expressed on spinally projecting PVN neurons. Also, blocking ATP-dependent K+ (KATP) channels with 100 ,M glibenclamide or 200 ,M tolbutamide, but not the G protein-coupled inwardly rectifying K+ channels blocker tertiapin-Q, abolished the inhibitory effect of adenosine on the firing activity of PVN neurons. Furthermore, glibenclamide or tolbutamide significantly decreased the adenosine-induced outward currents in labeled neurons. The reversal potential of adenosine-induced currents was close to the K+ equilibrium potential. In addition, adenosine decreased the frequency of both spontaneous and miniature glutamatergic excitatory post-synaptic currents and GABAergic inhibitory post-synaptic currents in labeled neurons, and these effects were also blocked by 8-cyclopentyl-1,3-dipropylxanthine. Collectively, our findings suggest that adenosine inhibits the excitability of PVN pre-sympathetic neurons through A1 receptor-mediated opening of KATP channels. [source]


    P2X2, P2X2,2 and P2X5 receptor subunit expression and function in rat thoracolumbar sympathetic neurons

    JOURNAL OF NEUROCHEMISTRY, Issue 5 2001
    H. Schädlich
    The present study investigated the pharmacological properties of excitatory P2X receptors and P2X2 and P2X5 receptor subunit expression in rat-cultured thoracolumbar sympathetic neurons. In patch-clamp recordings, ATP (3,1000 µm; applied for 1 s) induced inward currents in a concentration-dependent manner. Pyridoxal-phosphate-6-azophenyl-2,,4,-disulfonate (PPADS; 30 µm) counteracted the ATP response. In contrast to ATP, ,,,-meATP (30 µm; for 1 s) was virtually ineffective. Prolonged application of ATP (100 µm; 10 s) induced receptor desensitization in a significant proportion of sympathetic neurons in a manner typical for P2X2,2 splice variant-mediated responses. Using single-cell RT-PCR, P2X2, P2X2,2 and P2X5 mRNA expression was detectable in individual tyrosine hydroxylase-positive neurons; coexpression of both P2X2 isoforms was not observed. Laser scanning microscopy revealed both P2X2 and P2X5 immunoreactivity in virtually every TH-positive neuron. P2X2 immunoreactivity was largely distributed over the cell body, whereas P2X5 immunoreactivity was most distinctly located close to the nucleus. In summary, the present study demonstrates the expression of P2X2, P2X2,2 and P2X5 receptor subunits in rat thoracolumbar neurons. The functional data in conjunction with a preferential membranous localization of P2X2/P2X2,2 compared with P2X5 suggest that the excitatory P2X responses are mediated by P2X2 and P2X2,2 receptors. Apparently there exist two types of P2X2 receptor-bearing sympathetic neurons: one major population expressing the unspliced isoform and another minor population expressing the P2X2,2 splice variant. [source]


    Efficient generation of mature cerebellar Purkinje cells from mouse embryonic stem cells

    JOURNAL OF NEUROSCIENCE RESEARCH, Issue 2 2010
    Osamu Tao
    Abstract Mouse embryonic stem cells (ESCs) can generate cerebellar neurons, including Purkinje cells (PCs) and their precursor cells, in a floating culture system called serum-free culture of embryoid body-like aggregates (SFEB) treated with BMP4, Fgf8b, and Wnt3a. Here we successfully established a coculture system that induced the maturation of PCs in ESC-derived Purkinje cell (EDPC) precursors in SFEB, using as a feeder layer a cerebellum dissociation culture prepared from mice at postnatal day (P) 6,8. PC maturation was incomplete or abnormal when the adherent culture did not include feeder cells or when the feeder layer was from neonatal cerebellum. In contrast, EDPCs exhibited the morphology of mature PCs and synaptogenesis with other cerebellar neurons when grown for 4 weeks in coculture system with the postnatal cerebellar feeder. Furthermore, the electrophysiological properties of these EDPCs were compatible with those of native mature PCs in vitro, such as Na+ or Ca2+ spikes elicited by current injections and excitatory or inhibitory postsynaptic currents, which were assessed by whole-cell patch-clamp recordings. Thus, EDPC precursors in SFEB can mature into PCs whose properties are comparable with those of native PCs in vitro. © 2009 Wiley-Liss, Inc. [source]


    Analysis of neural potential of human umbilical cord blood,derived multipotent mesenchymal stem cells in response to a range of neurogenic stimuli

    JOURNAL OF NEUROSCIENCE RESEARCH, Issue 9 2008
    Isabel Zwart
    Abstract We investigated the neurogenic potential of full-term human umbilical cord blood (hUCB),derived multipotent mesenchymal stem cells (MSCs) in response to neural induction media or coculture with rat neural cells. Phenotypic and functional changes were assessed by immunocytochemistry, RT-PCR, and whole-cell patch-clamp recordings. Naive MSCs expressed both mesodermal and ectodermal markers prior to neural induction. Exposure to retinoic acid, basic fibroblast growth factor, or cyclic adenosine monophosphate (cAMP) did not stimulate neural morphology, whereas exposure to dibutyryl cAMP and 3-isobutyl-1-methylxanthine stimulated a neuron-like morphology but also appeared to be cytotoxic. All protocols stimulated increases in expression of the neural precursor marker nestin, but expression of mature neuronal or glial markers MAP2 and GFAP was not observed. Nestin expression increases were serum level dependent. Electrophysiological properties of MSCs were studied with whole-cell patch-clamp recordings. The MSCs possessed no ionic currents typical of neurons before or after neural induction protocols. Coculture of hUCB-derived MSCs and rat neural cells induced some MSCs to adopt an astrocyte-like morphology and express GFAP protein and mRNA. Our data suggest hUCB-derived MSCs do not transdifferentiate into mature functioning neurons in response to the above neurogenic protocols; however, coculture with rat neural cells led to a minority adopting an astrocyte-like phenotype. © 2008 Wiley-Liss, Inc. [source]


    Ethanol Acutely Modulates mGluR1-Dependent Long-Term Depression in Cerebellum

    ALCOHOLISM, Issue 7 2010
    Li-Da Su
    Background:, Acute and chronic ethanol exposure produces profound impairments in motor functioning. Individuals with lower sensitivity to the acute motor impairing effects of ethanol have an increased risk of developing alcohol dependence and abuse, and infants with subtle delays in motor coordination development may have an increased risk for subsequently developing alcoholism. Thus, understanding the mechanism by which ethanol disrupts motor functioning is very important. Methods:, Parasagittal slices of the cerebellar vermis (250 ,M thick) were prepared from P17 to 20 Sprague,Dawley rats. Whole-cell recordings of Purkinje cells were obtained with an Axopatch 200B amplifier. Parallel fiber-Purkinje cell synaptic currents were sampled at 1 kHz and digitized at 10 kHz, and synaptic long-term depression (LTD) was observed in either external or internal application of ethanol for comparison. Results:, We determined whether ethanol acutely affects parallel fiber LTD using whole-cell patch-clamp recordings from Purkinje cells. Application of ethanol both externally (50 mM) and internally (17 and 10 mM) significantly suppressed mGluR-mediate slow currents. Short-term external ethanol exposure (50 but not 17 mM) during tetanus blocked mGluR-dependent parallel fiber LTD. Furthermore, internal 17 and 10 mM ethanol completely inhibited this LTD. Conclusions:, The results of the current study demonstrate that ethanol acutely suppresses parallel fiber LTD and may influence the mGluR-mediated slow current intracellularly. This study, plus previous evidence by Carta and colleagues (2006) and Belmeguenai and colleagues (2008), suggests significant actions of ethanol on mGluR-mediated currents and its dependent plasticity in brain. [source]


    Regulation of Kv channel expression and neuronal excitability in rat medial nucleus of the trapezoid body maintained in organotypic culture

    THE JOURNAL OF PHYSIOLOGY, Issue 9 2010
    Huaxia Tong
    Principal neurons of the medial nucleus of the trapezoid body (MNTB) express a spectrum of voltage-dependent K+ conductances mediated by Kv1,Kv4 channels, which shape action potential (AP) firing and regulate intrinsic excitability. Postsynaptic factors influencing expression of Kv channels were explored using organotypic cultures of brainstem prepared from P9,P12 rats and maintained in either low (5 mm, low-K) or high (25 mm, high-K) [K+]o medium. Whole cell patch-clamp recordings were made after 7,28 days in vitro. MNTB neurons cultured in high-K medium maintained a single AP firing phenotype, while low-K cultures had smaller K+ currents, enhanced excitability and fired multiple APs. The calyx of Held inputs degenerated within 3 days in culture, having lost their major afferent input; this preparation of calyx-free MNTB neurons allowed the effects of postsynaptic depolarisation to be studied with minimal synaptic activity. The depolarization caused by the high-K aCSF only transiently increased spontaneous AP firing (<2 min) and did not measurably increase synaptic activity. Chronic depolarization in high-K cultures raised basal levels of [Ca2+]i, increased Kv3 currents and shortened AP half-widths. These events relied on raised [Ca2+]i, mediated by influx through voltage-gated calcium channels (VGCCs) and release from intracellular stores, causing an increase in cAMP-response element binding protein (CREB) phosphorylation. Block of VGCCs or of CREB function suppressed Kv3 currents, increased AP duration, and reduced Kv3.3 and c- fos expression. Real-time PCR revealed higher Kv3.3 and Kv1.1 mRNA in high-K compared to low-K cultures, although the increased Kv1.1 mRNA was mediated by a CREB-independent mechanism. We conclude that Kv channel expression and hence the intrinsic membrane properties of MNTB neurons are homeostatically regulated by [Ca2+]i -dependent mechanisms and influenced by sustained depolarization of the resting membrane potential. [source]


    Differences in sodium voltage-gated channel properties according to myosin heavy chain isoform expression in single muscle fibres

    THE JOURNAL OF PHYSIOLOGY, Issue 21 2009
    F. Rannou
    The myosin heavy chain (MHC) isoform determines the characteristics and shortening velocity of muscle fibres. The functional properties of the muscle fibre are also conditioned by its membrane excitability through the electrophysiological properties of sodium voltage-gated channels. Macropatch-clamp is used to study sodium channels in fibres from peroneus longus (PL) and soleus (Sol) muscles (Wistar rats, n= 8). After patch-clamp recordings, single fibres are identified by SDS-PAGE electrophoresis according to their myosin heavy chain isoform (slow type I and the three fast types IIa, IIx, IIb). Characteristics of sodium currents are compared (Student's t test) between fibres exhibiting only one MHC isoform. Four MHC isoforms are identified in PL and only type I in Sol single fibres. In PL, maximal sodium current (Imax), maximal sodium conductance (gNa,max) and time constants of activation and inactivation (,m and ,h) increase according to the scheme I,IIa,IIx,IIb (P < 0.05). ,m values related to sodium channel type and/or function, are similar in Sol I and PL IIb fibres (P= 0.97) despite different contractile properties. The voltage dependence of activation (Va,1/2) shows a shift towards positive potentials from Sol type I to IIa, IIx and finally IIb fibres from PL (P < 0.05). These data are consistent with the earlier recruitment of slow fibres in a fast-mixed muscle like PL, while slow fibres of postural muscle such as soleus could be recruited in the same ways as IIb fibres in a fast muscle. [source]