Home About us Contact | |||
Patch Types (patch + type)
Kinds of Patch Types Selected AbstractsOptimal foraging on the roof of the world: Himalayan langurs and the classical prey modelAMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 3 2010Ken Sayers Abstract Optimal foraging theory has only been sporadically applied to nonhuman primates. The classical prey model, modified for patch choice, predicts a sliding "profitability threshold" for dropping patch types from the diet, preference for profitable foods, dietary niche breadth reduction as encounter rates increase, and that exploitation of a patch type is unrelated to its own abundance. We present results from a 1-year study testing these predictions with Himalayan langurs (Semnopithecus entellus) at Langtang National Park, Nepal. Behavioral data included continuous recording of feeding bouts and between-patch travel times. Encounter rates were estimated for 55 food types, which were analyzed for crude protein, lipid, free simple sugar, and fibers. Patch types were entered into the prey model algorithm for eight seasonal time periods and differing age-sex classes and nutritional currencies. Although the model consistently underestimated diet breadth, the majority of nonpredicted patch types represented rare foods. Profitability was positively related to annual/seasonal dietary contribution by organic matter estimates, whereas time estimates provided weaker relationships. Patch types utilized did not decrease with increasing encounter rates involving profitable foods, although low-ranking foods available year-round were taken predominantly when high-ranking foods were scarce. High-ranking foods were taken in close relation to encounter rates, while low-ranking foods were not. The utilization of an energetic currency generally resulted in closest conformation to model predictions, and it performed best when assumptions were most closely approximated. These results suggest that even simple models from foraging theory can provide a useful framework for the study of primate feeding behavior. Am J Phys Anthropol, 2010. © 2009 Wiley-Liss, Inc. [source] Exoenzyme activities as indicators of dissolved organic matter composition in the hyporheic zone of a floodplain riverFRESHWATER BIOLOGY, Issue 8 2010SANDRA M. CLINTON Summary 1. We measured the hyporheic microbial exoenzyme activities in a floodplain river to determine whether dissolved organic matter (DOM) bioavailability varied with overlying riparian vegetation patch structure or position along flowpaths. 2. Particulate organic matter (POM), dissolved organic carbon (DOC), dissolved oxygen (DO), electrical conductivity and temperature were sampled from wells in a riparian terrace on the Queets River, Washington, U.S.A. on 25 March, 15 May, 20 July and 09 October 1999. Dissolved nitrate, ammonium and soluble reactive phosphorus were also collected on 20 July and 09 October 1999. Wells were characterised by their associated overlying vegetation: bare cobble/young alder, mid-aged alder (8,20 years) and old alder/old-growth conifer (25 to >100 years). POM was analysed for the ash-free dry mass and the activities of eight exoenzymes (,-glucosidase, ,-glucosidase, , -N-acetylglucosaminidase, xylosidase, phosphatase, leucine aminopeptidase, esterase and endopeptidase) using fluorogenic substrates. 3. Exoenzyme activities in the Queets River hyporheic zone indicated the presence of an active microbial community metabolising a diverse array of organic molecules. Individual exoenzyme activity (mean ± standard error) ranged from 0.507 ± 0.1547 to 22.8 ± 5.69 ,mol MUF (g AFDM),1 h,1, was highly variable among wells and varied seasonally, with the lowest rates occurring in March. Exoenzyme activities were weakly correlated with DO, DOC and inorganic nutrient concentrations. 4. Ratios of leucine aminopeptidase : ,-glucosidase were low in March, May and October and high in July, potentially indicating a switch from polysaccharides to proteins as the dominant component of microbial metabolism. 5. Principal components analysis indicated that there were patch effects and that these effects were strongest in the summer. 6. DOM degradation patterns did not change systematically along hyporheic flowpaths but varied with overlying forest patch type in the Queets River hyporheic zone, suggesting that additional carbon inputs exist. We hypothesise that the most likely input is the downward movement of DOM from overlying riparian soils. Understanding this movement of DOM from soils to subsurface water is essential for understanding both the hyporheic metabolism and the carbon budget of streams and rivers. [source] Distribution and growth of benthic macroinvertebrates among different patch types of the littoral zones of two arctic lakesFRESHWATER BIOLOGY, Issue 12 2006STEVEN R. BEATY Summary 1. To evaluate the effect of habitat patch heterogeneity on abundance and growth of macroinvertebrates in arctic lakes, macroinvertebrate abundance, individual biomass, and potential food resources were studied in three patch types in two arctic lakes on the Alaskan North Slope near the Toolik Lake Field Station. An experiment was conducted to determine which sediment patch type supported higher growth rates for Chironomus sp., a commonly occurring macroinvertebrate. 2. Potential organic matter (OM) resources were significantly higher in both rock and macrophyte patches than in open-mud patches. Total macroinvertebrate densities in both lakes were highest in rock patches, intermediate in macrophytes and lowest in open-mud. The open-mud patches also had lower species richness compared with other patch types. Additionally, individual biomass for one clam species and two chironomid species was significantly greater in rock patches than in open-mud. 3. In a laboratory experiment, Chironomus showed two to three times greater mass increase in sediments from macrophyte and rock patches than from open-mud patches. Rock and macrophyte experimental sediments had at least 1.5 × the percentage OM as open-mud sediments. 4. Chlorophyll a appeared to be the best predictor for invertebrate abundances across all patch types measured, whereas OM content appeared to be the variable most closely associated with Chironomus growth. 5. Our results combined with previous studies show that the relationships between macroinvertebrate community structure, individual growth, and habitat heterogeneity are complex, reflecting the interaction of multiple resources, and biotic interactions, such as the presence or absence of a selective vertebrate predator (lake trout, Salvelinus namaycush). [source] The biology of insularity: an introductionJOURNAL OF BIOGEOGRAPHY, Issue 5-6 2002Donald R. Drake Insular environments, ranging from oceanic islands to fragments of once-contiguous natural systems, have long been used by biologists to test basic principles of ecology, evolution and biogeography. More recently, insular environments have figured prominently in conservation ecology, where the aim has usually been to conserve species or assemblages unique to isolated habitats. Improving the level of communication among the evolutionary biologists, theoretical ecologists and conservation biologists who study insular biotas will work to the benefit of all. This volume was inspired by a recent conference on the ecology of insular biotas, in which participants from a wide range of disciplines came together to compare ecological processes across a variety of taxonomic groups inhabiting a wide range of isolated environments. In this introduction, we point out the themes underlying these very diverse contributions. First we elaborate on the value of islands for elucidating processes underlying ecosystem functioning, population dynamics of reintroduced species, and restoration of disturbed habitats, and emphasize those areas where the use of islands could be expanded. The second section focuses on the link between ecology and evolutionary processes in insular systems and includes examples from oceanic islands, naturally patchy habitats and recently fragmented habitats. The third section illustrates some of the ways that invasive alien species on oceanic islands affect plant,animal mutualisms, particularly seed dispersal and pollination. The final section, on consequences of habitat fragmentation, focuses mainly on studies that describe the consequences that fragmentation has for plants and animals as they are forced into artificially insular environments. We close with a study that points out the differences among types of insular systems and identifies gaps in our knowledge of insular biotas, particularly the importance of explicitly incorporating patch type, age and patch,matrix contrasts in research. Finally, we recommend a greater emphasis on linking ecological theory and applied research, and improving communication between those who ask basic ecological questions and those who use insular systems for conservation. [source] Retrodicting patch use by foraging swans in a heterogeneous environment using a set of functional responsesOIKOS, Issue 3 2009Bart A. Nolet Effective conservation of important bird areas requires insight in the number of birds an area can support, and how this carrying capacity changes with habitat modifications. When food depletion is the dominant mechanism of competition, it should in principle be possible to calculate the total time foragers can spend per patch from their functional response (intake rate as a function of food density). However, in the field there are likely to be factors modulating the functional response. In this study previously published results of experiments on captive Bewick's swans were used to obtain functional responses of swans digging for tubers of Fennel pondweed on different foraging substrates: sandy and clayey sediment, and in shallow and deep water. In a field study, four 250×250 m sections belonging to different types (sandy,shallow, clayey,shallow, sandy,deep and clayey,deep) were delineated. Here tubers were sampled with sediment corers in three years, both before and after swan exploitation in autumn, and swans were observed and mapped from a hide in two of these years. Giving-up tuber biomass densities varied among sections. Substitution of these giving-up densities in the derived patch-type-specific functional responses yielded the quitting net energy intake rates in the four sections. As expected from the marginal value theorem, the quitting net energy intake rates did not vary among sections. Moreover, the observed foraging pressure (total foraging time per area) per patch type was in quantitative agreement with the integrated functional responses. These results suggest that in spatially heterogeneous environments, patch exploitation by foragers can be predicted from their functional responses after accounting for foraging substrate. [source] Optimal foraging on the roof of the world: Himalayan langurs and the classical prey modelAMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 3 2010Ken Sayers Abstract Optimal foraging theory has only been sporadically applied to nonhuman primates. The classical prey model, modified for patch choice, predicts a sliding "profitability threshold" for dropping patch types from the diet, preference for profitable foods, dietary niche breadth reduction as encounter rates increase, and that exploitation of a patch type is unrelated to its own abundance. We present results from a 1-year study testing these predictions with Himalayan langurs (Semnopithecus entellus) at Langtang National Park, Nepal. Behavioral data included continuous recording of feeding bouts and between-patch travel times. Encounter rates were estimated for 55 food types, which were analyzed for crude protein, lipid, free simple sugar, and fibers. Patch types were entered into the prey model algorithm for eight seasonal time periods and differing age-sex classes and nutritional currencies. Although the model consistently underestimated diet breadth, the majority of nonpredicted patch types represented rare foods. Profitability was positively related to annual/seasonal dietary contribution by organic matter estimates, whereas time estimates provided weaker relationships. Patch types utilized did not decrease with increasing encounter rates involving profitable foods, although low-ranking foods available year-round were taken predominantly when high-ranking foods were scarce. High-ranking foods were taken in close relation to encounter rates, while low-ranking foods were not. The utilization of an energetic currency generally resulted in closest conformation to model predictions, and it performed best when assumptions were most closely approximated. These results suggest that even simple models from foraging theory can provide a useful framework for the study of primate feeding behavior. Am J Phys Anthropol, 2010. © 2009 Wiley-Liss, Inc. [source] Litter decomposition in a sandy Monte desert of western Argentina: Influences of vegetation patches and summer rainfallAUSTRAL ECOLOGY, Issue 7 2006EDUARDO PUCHETA Abstract: We tested the hypothesis that shrub canopies interact with monthly rain pulses to control litter decomposition in a sandy Monte desert, in Argentina. We assessed (i) the potential for litter decomposition of soils beneath the canopies of two dominant shrub species (Larrea divaricata and Bulnesia retama, Zygophyllaceae R. Br.) and from bare-ground microsites or ,openings'; (ii) litter decomposition at different spatial patches over the summer rainy season; and (iii) the interaction between vegetation patches and monthly rain pulses on short-term litter decomposition, or decomposition pulses. In a greenhouse experiment, we found buried litter decomposition to be higher in soils from under the canopies of a dominant shrub species compared with soils from openings and sterilized controls. This, and higher nutrient concentration under shrub soils, suggest undercanopy soils may support a microbial community capable of decomposing litter at higher rates than soils in bare openings. However, ,eld trials showed that shrub patches did not affect leaf litter decomposition over the rainy season, at least for short periods. We found an interaction between shrub patches and incubation time at the end of the ,eld experiment, with higher litter decomposition rates under B. retama canopies. In a monthly ,eld experiment, we found monthly rain pulses signi,cantly explained decomposition pulses, irrespective of patch type. Our ,ndings support the hypothesis that shrub soils have a greater potential for litter decomposition, but this is not directly translated to the ,eld possibly due to interactions with abiotic factors. Rain pulses create conditions for decomposition pulses to occur at shorter time scales, whereas rainfall may interact with a dominant shrub undercanopy to control litter mass loss over longer time scales. [source] Randomized trial of vein versus dacron patching during carotid endarterectomyBRITISH JOURNAL OF SURGERY (NOW INCLUDES EUROPEAN JOURNAL OF SURGERY), Issue 4 2001P. D. Hayes Background: A recent overview has indicated that, while routine patching is safer than primary closure following carotid endarterectomy (CEA), there is no systematic evidence that patch type influences outcome. Most surgeons perceive that prosthetic patches are more thrombogenic than vein patches. This study tested the hypothesis that it is the patient who is prothrombotic rather than the nature of the patch. Methods: Some 274 patients undergoing 276 CEAs were randomized to either dacron (Du Pont, Stevenage, UK) patch closure (n = 137) or vein patch closure (n = 139). All patients with an accessible cranial window were monitored for 3 h after operation using transcranial Doppler (TCD) ultrasonography. The number and rate of embolizations were quantified, together with the requirement for selective dextran therapy to control high rates of postoperative embolization. All patients were assessed after operation and again at 30 days by a neurologist, and all underwent duplex imaging at 30 days. Results: The 30-day death or any stroke rate was 2·2 per cent for dacron-patched patients and 3·6 per cent for vein-patched patients (P = 0·72). Dacron-patched patients had a higher incidence of postoperative emboli (median 5 (interquartile range 0,10·5)), compared with a median of 3 (interquartile range 1,17) for vein (P = 0·028). However, the incidence of detecting more than 50 emboli was virtually identical and patch type had no effect on the incidence of sustained high-rate embolization requiring dextran therapy (5·3 per cent for dacron versus 3·7 per cent for vein). No patient had a carotid thrombosis at 30 days. Conclusion: Sustained high-rate embolization, previously shown to be highly predictive of progression to carotid thrombosis, appears to be patient dependent rather than related to patch type. © 2001 British Journal of Surgery Society Ltd [source] Prescribing Flood Regimes to Sustain Riparian Ecosystems along Meandering RiversCONSERVATION BIOLOGY, Issue 5 2000Brian D. Richter By managing river flows for water supplies and power generation, water management agencies have inadvertently caused considerable degradation of riverine ecosystems and associated biodiversity. New approaches for meeting human needs for water while conserving the ecological integrity of riverine ecosystems are greatly needed. We describe an approach for identifying the natural flooding characteristics that must be protected or restored to maintain riparian ( floodplain) ecosystems along meandering rivers. We developed a computer model to simulate flood-driven changes in the relative abundance of riparian patch types along the Yampa River in Colorado ( U.S.A.). The model is based on research suggesting that the duration of flooding at or above 209 m3 per second (125% of bankfull discharge) is particularly important in driving lateral channel migration, which is responsible for initiating ecological succession in the Yampa's riparian forest. Other hydrologic variables, such as the magnitude of annual peak flows, were not as strongly correlated with lateral channel migration rates. Model simulations enabled us to tentatively identify a threshold of alteration of flood duration that could lead to substantial changes in the abundance of forest patch types over time should river flows be regulated by future water projects. Based on this analysis, we suggest an ecologically compatible water management approach that avoids crossing flood alteration thresholds and provides opportunity to use a portion of flood waters for human purposes. Recommended improvements to the Yampa model include obtaining additional low-elevation aerial photographs of the river corridor to enable better estimation of channel migration rates and vegetation changes. These additional data should greatly improve the model's accuracy and predictive capabilities and therefore its management value. Resumen: La composición y estructura de ecosistemas ribereños están fuertemente ligadas a la variabilidad hidrológica natural. Al manejar el flujo de ríos para abastecer agua y generar energía, las agencias de manejo de agua han causado inadvertidamente una degradación considerable de los ecosistemas ribereños y la biodiversidad asociada a ellos. Se necesitan nuevas estrategias para satisfacer las necesidades humanas de agua al mismo tiempo que se conserva la integridad de los ecosistemas ribereños. Describimos una estrategia para identificar las características de inundaciones naturales que deben ser protegidas o restauradas para mantener ecosistemas riparios ( planicies de inundación) a lo largo de ríos sinuosos. Desarrollamos un modelo de computadora para simular los cambios causados por inundaciones en la abundancia relativa de tipos de parche ripario a lo largo del río Yampa, en Colorado ( Estados Unidos de Norteamérica). Este modelo se basa en investigación que sugiere que la duración de la inundación a, o mayor a, 209 m3 por segundo (125% de descarga del banco lleno a su capacidad) es particularmente importante en la conducción de la migración de canales laterales, lo cual es responsable de la iniciación de la sucesión ecológica en el bosque ripario del río Yampa. Otras variables hidrológicas, como lo es la magnitud del pico de los flujos anuales no estuvieron tan fuertemente correlacionadas con las tasas de migración lateral de canales. Las simulaciones del modelo nos permitieron identificar límites tentativos de alteración de la duración de la inundación que podrían conducir a cambios sustanciales en la abundancia de tipos de parches forestales en el tiempo si los flujos de los ríos son regulados en proyectos de agua futuros. En base a este análisis, sugerimos una estrategia de manejo de agua ecológicamente compatible que evita sobrepasar los límites de alteración de las inundaciones y provee la oportunidad de usar una porción del agua de las inundaciones para fines humanos. Las recomendaciones de mejoras al modelo del río Yampa incluyen la necesidad de obtener fotografías aéreas de baja elevación adicionales del corredor del río, que permitan una mejor estimación de las tasas de migración de los canales y los cambios en la vegetación. Estos datos adicionales deberán mejorar en gran medida la precisión del modelo y sus capacidades predictivas y, por lo tanto, su valor de manejo. [source] Influences of the vegetation mosaic on riparian and stream environments in a mixed forest-grassland landscape in "Mediterranean" northwestern CaliforniaECOGRAPHY, Issue 4 2005Hartwell H. Welsh We examined differences in riparian and aquatic environments within the three dominant vegetation patch types of the Mattole River watershed, a 789-km2 mixed conifer-deciduous (hardwood) forest and grassland-dominated landscape in northwestern California, USA. Riparian and aquatic environments, and particularly microclimates therein, influence the distributions of many vertebrate species, particularly the physiologically-restricted ectotherms , reptiles and amphibians (herpetofauna), and fishes. In addition to being a significant portion of the native biodiversity of a landscape, the presence and relative numbers of these more tractable small vertebrates can serve as useful metrics of its "ecological health." Our primary objective was to determine the range of available riparian and aquatic microclimatic regimes, and discern how these regimes relate to the dominant vegetations that comprise the landscape mosaic. A second objective, reported in a companion paper, was to examine relationships between available microclimatic regimes and herpetofaunal distributions. Here we examined differences in the composition, structure, and related environmental attributes of the three dominant vegetation types, both adjacent to and within the riparian corridors along 49 tributaries. Using automated dataloggers, we recorded hourly water and air temperatures and relative humidity throughout the summer at a representative subset of streams; providing us with daily means and amplitudes for these variables within riparian environments during the hottest period. Although the three vegetation types that dominate this landscape each had unique structural attributes, the overlap in plant species composition indicates that they represent a seral continuum. None-the-less, we found distinct microclimates in each type. Only riparian within late-seral forests contained summer water temperatures that could support cold-water-adapted species. We evaluated landscape-level variables to determine the best predictors of water temperature as represented by the maximum weekly maximum temperature (MWMT). The best model for predicting MWMT (adj. R2=0.69) consisted of catchment area, aspect, and the proportion of non-forested (grassland) patches. Our model provides a useful tool for management of cold-water fauna (e.g. salmonids, stream amphibians) throughout California's "Mediterranean" climate zone. [source] The influence of scale and patchiness on spider diversity in a semi-arid environmentECOGRAPHY, Issue 4 2002Mary E. A. Whitehouse Semi-arid scrubland in the Middle East consists of a soil crust matrix overlain with patches of perennial shrubs. To understand factors influencing biodiversity in this vulnerable landscape we need to understand how this mosaic of habitats influences associated fauna. Spiders are particularly abundant in this habitat so we asked if spider diversity differed between habitat patches and if different patch types contained either a subset of the regional species pool or specific species guilds. We also asked whether changes in the fractal nature of the microphytic and macrophytic patch mosaic altered spider diversity in this habitat. We found that the semi-arid scrubland at Sayeret Shaked Park (Israel) contains different spider communities that require patches of a certain quality to develop fully. Different patch types contain communities of different species, but the community structure of the patches is similar. We suggest that large-scale environmental factors typical of the site as a whole influence coarse-grained community structure, while small-scale differences between patch types result in the specialisation of species to different patch types. [source] Variation in mistletoe seed deposition: effects of intra- and interspecific host characteristicsECOGRAPHY, Issue 2 2002Juliann Eve Aukema We investigated differences in host infection by a desert mistletoe, Phoradendron californicum, and examined one of the processes that contributes to these differences: variation in seed deposition among host individuals and species. In the Sonoran Desert, P. californicum parasitizes the sympatric leguminous trees Olneya tesota, Cercidium microphyllum, Prosopis velutina, Acacia constricta, and Acacia greggii. We hypothesized that seed deposition depends on host height and crown architecture. At a site in Arizona, frequency of infection did not reflect host relative abundance. Olneya tesota was parasitized at a higher frequency than expected from its abundance and maintained the highest mistletoe loads per individual host. In contrast, P. velutina was infected less frequently than expected. Infection frequency increased with host tree height for all hosts. Mistletoe seed deposition by avian dispersers differed among host species and was disproportionately high in O. tesota and P. velutina. Seed deposition was higher in infected than in non-infected host trees, and increased with tree height in O. tesota but not in C. microphyllum. We suspect that increased seed deposition with height in O. tesota may be due to the preference of seed-dispersing birds for higher perches. Some host tree species, such as C. microphyllum and A. constricta, probably received fewer mistletoe seeds because birds avoid hosts with dense and spiny crowns. Mistletoe populations are plant metapopulations in which host trees are patches and the frequency of infection in each host species/patch type is the result of interspecific differences in the balance between mistletoe colonization and extinction. From this perspective, our study of host use and seed dispersal is a metapopulation study of patch occupancy and propagule distribution among available patch types. Our seed-dispersal study demonstrates that the mechanisms that create pattern in patchy plant populations can be investigated in mistletoe systems. [source] Wedged between bottom-up and top-down processes: aphids on tansyECOLOGICAL ENTOMOLOGY, Issue 1 2004Bernhard Stadler Abstract., 1. Many species of aphids exploit a single host-plant species and have to cope with changing environmental conditions. They often vary greatly in abundance even when feeding on the same host. In a field experiment, the bottom-up (plant quality/patch type frequency) and top-down (ant attendance/predation) effects on the abundance of four species of aphids feeding on tansy (Tanacetum vulgare) were tested using a full factorial design. In addition, a model was used to examine these patch characteristics for their relative effects on the population dynamics and abundance of different aphid species. 2. Aphid numbers changed significantly depending on the quality of the host plant and the presence/absence of attending ants. The obligate myrmecophile, Metopeurum fuscoviride, was abundant on high-quality plants, while on poor quality plants or on plants without attending ants these aphids did not survive until the end of the experiment. The facultative myrmecophiles, Aphis fabae and Brachycaudus cardui, and the unattended aphid species, Macrosiphoniella tanacetaria, all reached similar peak population densities, but M. tanacetaria did best in poor quality patches. 3. Natural enemies reduced aphid numbers, but those species feeding on high-quality plants survived longer than those on poor-quality plants, which existed only for a short period of time, especially when associated with ants. Losses due to migration of winged morphs and mortality caused by parasitoids were insignificant. 4. Varying the frequency of different patch types in a model indicates that different degrees of associations with ants are favoured in different environments. If the proportion of high-quality patches in a habitat is large, obligate myrmecophiles do best. On increasing the number of poor-quality patches, unattended species become more abundant. 5. The results suggest that, in spite of large species specific differences in growth rates, degree of myrmecophily or life cycle features, the temporal and spatial variability in top-down and bottom-up forces differentially affects aphid species and allows the simultaneous exploitation of a shared host-plant species. [source] Distribution and growth of benthic macroinvertebrates among different patch types of the littoral zones of two arctic lakesFRESHWATER BIOLOGY, Issue 12 2006STEVEN R. BEATY Summary 1. To evaluate the effect of habitat patch heterogeneity on abundance and growth of macroinvertebrates in arctic lakes, macroinvertebrate abundance, individual biomass, and potential food resources were studied in three patch types in two arctic lakes on the Alaskan North Slope near the Toolik Lake Field Station. An experiment was conducted to determine which sediment patch type supported higher growth rates for Chironomus sp., a commonly occurring macroinvertebrate. 2. Potential organic matter (OM) resources were significantly higher in both rock and macrophyte patches than in open-mud patches. Total macroinvertebrate densities in both lakes were highest in rock patches, intermediate in macrophytes and lowest in open-mud. The open-mud patches also had lower species richness compared with other patch types. Additionally, individual biomass for one clam species and two chironomid species was significantly greater in rock patches than in open-mud. 3. In a laboratory experiment, Chironomus showed two to three times greater mass increase in sediments from macrophyte and rock patches than from open-mud patches. Rock and macrophyte experimental sediments had at least 1.5 × the percentage OM as open-mud sediments. 4. Chlorophyll a appeared to be the best predictor for invertebrate abundances across all patch types measured, whereas OM content appeared to be the variable most closely associated with Chironomus growth. 5. Our results combined with previous studies show that the relationships between macroinvertebrate community structure, individual growth, and habitat heterogeneity are complex, reflecting the interaction of multiple resources, and biotic interactions, such as the presence or absence of a selective vertebrate predator (lake trout, Salvelinus namaycush). [source] Local disturbance history affects patchiness of benthic river algaeFRESHWATER BIOLOGY, Issue 9 2003Christoph D. Matthaei Summary 1.,Recent research has shown that high-flow events in streams leave a small-scale mosaic of bed patches that have experienced scouring, sediment deposition (fill), or remained stable. Few studies have investigated if this ,local disturbance history' contributes to the patchy distribution of benthic organisms in streams and rivers. 2.,In the present research, we demonstrate that local disturbance history in a mid-sized river can have both short- and long-term effects on epilithic algae. Chains buried vertically in the substratum of the river bed (236 in a 800-m reach) indicated that two floods (return periods ,1 year) caused a mosaic of bed patches with different disturbance histories. Once after the first and twice after the second flood, we sampled epilithic algae (mainly diatoms) in replicate patches that had been scoured, filled, or remained stable during the respective event. Algal biomass and cell density per substratum area were determined. 3.,Three months after the first flood, algal biomass, total diatom density, diatom taxon richness, and densities of six of nine most common taxa were highest in fill patches. Six days after the second flood, biomass was highest in stable patches, indicating a refugium function of these patches. The refugium patches consisted of average-sized stones, in contrast to previous studies of flood refugia for benthic algae in which these refugia were always large and/or immobile substrata. Four weeks after the second flood, diatoms tended to be most abundant in scour patches. With one exception, these differences between patch types could not be attributed to differences in local near-bed current velocity or water depth. 4.,The effects of disturbance history were more complex than a simple refugium function of stable patches because algal patterns changed with time since the last disturbance, possibly depending on the successional state of the algal mats. [source] Gain functions for large herbivores: tests of alternative modelsJOURNAL OF ANIMAL ECOLOGY, Issue 1 2005KATE R. SEARLE Summary 1The gain function describes the amount of food consumed in a patch as a function of patch residence time. Gain functions play a central role in foraging theory but alternative functional forms portraying dynamics of gain have not been evaluated. We evaluated the strength of evidence in the data for alternative gain functions of mule deer (Odocoileus hemionus, Rafinesque 1817) and blue duikers (Cephalophus monticola, Blythe 1848) feeding in patches composed of different plant species and plant sizes. 2Gain functions decelerated with patch residence time, but there was considerable variation among individual animals and patch types in the nature of this response. Asymptotic and piecewise-linear models received the greatest support in the data. 3Deceleration in gain was caused by a composite of effects that retarded instantaneous intake rate, including reductions in bite mass and increases in bite interval (time between successive bites). Bite interval increased as a result of increases in processing time of accumulated forage in the mouth, rather than increases in time allocated to cropping. 4We demonstrated that unwarranted assumptions about the shape of gain functions can have profound effects on predictions of patch models. Predictions of the classical patch model using purely asymptotic gain functions contrasted sharply with predictions of model-averaged gain functions that were supported by the data. [source] Disturbance and reef topography maintain high local diversity in Ecklonia radiata kelp forestsOIKOS, Issue 10 2007Benjamin D. Toohey Disturbance of competitive-dominant plant and algae canopies often lead to increased diversity of the assemblage. Kelp forests, particularly those of temperate Western Australia, are habitats with high alpha diversity. This study investigated the roles of broad-scale canopy loss and local scale reef topography on structuring the kelp-dominated macroalgal forests in Western Australia. Eighteen 314,m2 circular areas were cleared of their Ecklonia radiata canopy and eighteen controls were established across three locations. The patterns of macroalgal recolonisation in replicate clearances were observed over a 34,month period. Macroalgal species richness initially increased after canopy removal with a turf of filamentous and foliose macroalgae dominating cleared areas for up to seven months. A dense Sargassum canopy dominated cleared areas from 11 to 22,months. By 34,months, partial recovery of the kelp canopy into cleared areas had occurred. Some cleared areas did not follow this trajectory but remained dominated by turfing, foliose and filamentous algae. As kelp canopies developed, the initial high species diversity declined but still remained elevated relative to undisturbed controls, even after 34 months. More complex reef topography was associated with greater variability in the algal assemblage between replicate quadrats suggesting colonising algae had a greater choice of microhabitats available to them on topographically complex reefs. Shading by canopies of either Sargassum spp. and E. radiata are proposed to highly influence the abundance of algae through competitive exclusion that is relaxed by disturbance of the canopy. Disturbance of the canopy in E. radiata kelp forests created a mosaic of different patch types (turf, Sargassum -dominated, kelp-dominated). These patch types were both transient and stable over the 34 months of this study, and are a potential contemporary process that maintains high species diversity in temperate kelp-dominated reefs. [source] Patch dynamics in a landscape modified by ecosystem engineersOIKOS, Issue 2 2004Justin P. Wright Ecosystem engineers, organisms that modify the environment, have the potential to dramatically alter ecosystem structure and function at large spatial scales. The degree to which ecosystem engineering produces large-scale effects is, in part, dependent on the dynamics of the patches that engineers create. Here we develop a set of models that links the population dynamics of ecosystem engineers to the dynamics of the patches that they create. We show that the relative abundance of different patch types in an engineered landscape is dependent upon the production of successful colonists from engineered patches and the rate at which critical resources are depleted by engineers and then renewed. We also consider the effects of immigration from either outside the system or from engineers that are present in non-engineered patches, and the effects of engineers that can recolonize patches before they are fully recovered on the steady state distribution of different patch types. We use data collected on the population dynamics of a model engineer, the beaver, to estimate the per-patch production rate of new colonists, the decay rate of engineered patches, and the recovery rate of abandoned patches. We use these estimated parameters as a baseline to determine the effects of varying parameters on the distribution of different patch types. We suggest a number of hypotheses that derive from model predictions and that could serve as tests of the model. [source] Effects of species diversity on the primary productivity of ecosystems: extending our spatial and temporal scales of inferenceOIKOS, Issue 3 2004Bradley J. Cardinale The number of studies examining how species diversity influences the productivity of ecosystems has increased dramatically in the past decade as concern about global loss of biodiversity has intensified. Research to date has greatly improved our understanding of how, when, and why species loss alters primary production in ecosystems. However, because experiments have been performed at rather small spatial and short temporal scales, it is unclear whether conclusions can be readily extrapolated to the broader scales at which natural communities are most likely to influence ecosystem functioning. Here we develop a simple patch-dynamics model to examine some of the scale-dependent and independent qualities of the diversity-productivity relationship. We first simulate a typical diversity-productivity experiment and show that the influence of species richness on productivity is temporally dynamic, growing stronger through successional time. This holds true irrespective of whether resource partitioning or a sampling effect is the underlying mechanism. We then increase the spatial scale of the simulation from individual patches to a region consisting of many patch types. Results suggest that the diversity-productivity relationship is not influenced by spatial scale per se, but that the mechanism producing the relationship can change from sampling effects within individual patches to resource partitioning across patch types composing the region. This change occurs even though model dynamics are the same at both scales, suggesting that sampling effects and resource partitioning can represent different descriptions of the same biological processes operating concurrently at differing scales of observation. Lastly, we incorporate regional processes of dispersal and disturbance into the model and show that these processes can amplify the effect of species richness on productivity, resulting in patterns not easily anticipated from experiments. We conclude that the relative control of community structure by local versus regional processes may be a primary determinant of the diversity-productivity relationship in natural ecosystems. Therefore, past experiments having focused only on local processes might not reflect patterns and processes underlying diversity-productivity relationships in communities where disturbance and dispersal regulate species biomasses. [source] Optimal foraging on the roof of the world: Himalayan langurs and the classical prey modelAMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 3 2010Ken Sayers Abstract Optimal foraging theory has only been sporadically applied to nonhuman primates. The classical prey model, modified for patch choice, predicts a sliding "profitability threshold" for dropping patch types from the diet, preference for profitable foods, dietary niche breadth reduction as encounter rates increase, and that exploitation of a patch type is unrelated to its own abundance. We present results from a 1-year study testing these predictions with Himalayan langurs (Semnopithecus entellus) at Langtang National Park, Nepal. Behavioral data included continuous recording of feeding bouts and between-patch travel times. Encounter rates were estimated for 55 food types, which were analyzed for crude protein, lipid, free simple sugar, and fibers. Patch types were entered into the prey model algorithm for eight seasonal time periods and differing age-sex classes and nutritional currencies. Although the model consistently underestimated diet breadth, the majority of nonpredicted patch types represented rare foods. Profitability was positively related to annual/seasonal dietary contribution by organic matter estimates, whereas time estimates provided weaker relationships. Patch types utilized did not decrease with increasing encounter rates involving profitable foods, although low-ranking foods available year-round were taken predominantly when high-ranking foods were scarce. High-ranking foods were taken in close relation to encounter rates, while low-ranking foods were not. The utilization of an energetic currency generally resulted in closest conformation to model predictions, and it performed best when assumptions were most closely approximated. These results suggest that even simple models from foraging theory can provide a useful framework for the study of primate feeding behavior. Am J Phys Anthropol, 2010. © 2009 Wiley-Liss, Inc. [source] Effectiveness of repeated autumn and spring fires for understorey restoration in weed-invaded temperate eucalypt woodlandsAPPLIED VEGETATION SCIENCE, Issue 4 2009Suzanne Prober Abstract Question. Can strategic burning, targeting differing ecological characteristics of native and exotic species, facilitate restoration of native understorey in weed-invaded temperate grassy eucalypt woodlands? Location. Gippsland Plains, eastern Victoria, Australia. Methods. In a replicated, 5-year experimental trial, the effects of repeated spring or autumn burning were evaluated for native and exotic plants in a representative, degraded Eucalyptus tereticornis grassy woodland. Treatments aimed to reduce seed banks and modify establishment conditions of exotic annual grasses, and to exhaust vegetative reserves of exotic perennial grasses. Treatments were applied to three grassland patch types, dominated by the native grass Austrodanthonia caespitosa, ubiquitous exotic annuals, or the common exotic perennial grass Paspalum dilatatum. Results. The dominant native grass Austrodanthonia caespitosa and native forbs were resilient to repeated fires, and target exotic annuals and perennials were suppressed differentially by autumn and spring fires. Exotic annuals were also suppressed by drought, reducing the overall treatment effects but indicating important opportunities for restoration. The initially sparse exotic geophyte Romulea rosea increased in cover with fire and the impact of this species on native forbs requires further investigation. There was minimal increase in diversity of subsidiary natives with fire, probably owing to lack of propagules. Conclusions. While fire is often considered to increase ecosystem invasibility, our study showed that strategic use of fire, informed by the relative responses of available native and exotic taxa, is potentially an effective step towards restoration of weed-invaded temperate eucalypt woodlands. [source] Spatial scale of GIS-derived categorical variables affects their ability to separate sites by community compositionAPPLIED VEGETATION SCIENCE, Issue 3 2008Emily A. Holt Abstract. Questions: How well do GIS-derived categorical variables (e.g., vegetation, soils, geology, elevation, geography, and physiography) separate plots based on community composition? How does the ability to distinguish plots by community composition vary with spatial scale, specifically number of patch types, patch size and spatial correlation? Both these questions bear on the effective use of stratifying variables in landscape ecology. Location: Arctic tundra; Bering Land Bridge National Preserve, northwestern Alaska, USA. Methods: We evaluated the strength of numerous alternative stratifying variables using the multi-response permutation procedure (MRPP). We also created groups based on lichen community composition, using cluster analyses, and evaluated the relationship between these groups and groupings within categorical variables using Mantel tests. Each test represents different measures of community separation, which were then evaluated with respect to each variable's spatial characteristics. Results: We found each categorical variable derived from GIS separated lichen communities to some degree. Separation success ranged from strong (Alaska Subsections) to weak (Watersheds and Reindeer Ownership). Lichen community groups derived from cluster analysis demonstrated statistically significant relationships with 13 of the 17 categorical variables. Partialling out effects of spatial distance had little effect on these relationships. Conclusions: Greater number of patch types and larger average patch sizes contribute to optimal success in separating lichen communities; geographic distance did not appear to significantly alter separation success. Group distinctiveness or strength increased with more patch types or groups. Alternatively, congruence between lichen community types derived from cluster analysis and the 17 categorical variables was inversely related to patch size and spatial correlation. [source] Variation in mistletoe seed deposition: effects of intra- and interspecific host characteristicsECOGRAPHY, Issue 2 2002Juliann Eve Aukema We investigated differences in host infection by a desert mistletoe, Phoradendron californicum, and examined one of the processes that contributes to these differences: variation in seed deposition among host individuals and species. In the Sonoran Desert, P. californicum parasitizes the sympatric leguminous trees Olneya tesota, Cercidium microphyllum, Prosopis velutina, Acacia constricta, and Acacia greggii. We hypothesized that seed deposition depends on host height and crown architecture. At a site in Arizona, frequency of infection did not reflect host relative abundance. Olneya tesota was parasitized at a higher frequency than expected from its abundance and maintained the highest mistletoe loads per individual host. In contrast, P. velutina was infected less frequently than expected. Infection frequency increased with host tree height for all hosts. Mistletoe seed deposition by avian dispersers differed among host species and was disproportionately high in O. tesota and P. velutina. Seed deposition was higher in infected than in non-infected host trees, and increased with tree height in O. tesota but not in C. microphyllum. We suspect that increased seed deposition with height in O. tesota may be due to the preference of seed-dispersing birds for higher perches. Some host tree species, such as C. microphyllum and A. constricta, probably received fewer mistletoe seeds because birds avoid hosts with dense and spiny crowns. Mistletoe populations are plant metapopulations in which host trees are patches and the frequency of infection in each host species/patch type is the result of interspecific differences in the balance between mistletoe colonization and extinction. From this perspective, our study of host use and seed dispersal is a metapopulation study of patch occupancy and propagule distribution among available patch types. Our seed-dispersal study demonstrates that the mechanisms that create pattern in patchy plant populations can be investigated in mistletoe systems. [source] |