Patch Area (patch + area)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Patch area, substrate depth, and richness affect giving-up densities: a test with mourning doves and cottontail rabbits

OIKOS, Issue 11 2009
Mohammad A. Abu Baker
We compared the foraging behavior of mourning doves Zenaida macroura and cottontail rabbits Sylvilagus floridanus in patches that varied in initial food abundance, surface area and substrate depth. We measured giving-up densities (GUD), food harvest and proportion of food harvested to investigate their ability to respond to characteristics of resource patches. GUDs have been analyzed in three ways: grams of per patch, grams per unit surface area (GUDAREA), and grams per unit volume of sand (GUDVOL). Mourning doves and cottontails exhibited similar responses to resource density and sand depth. Both foragers detected and responded to variation in initial food abundance. The proportion of food harvested from a patch increased from 40.7, 43.8 to 48.3% (for the doves) and 34.9, 35.8 to 38.4% (for the rabbits) in patches of low, medium and high initial food abundance, respectively. Deeper substrates reduced the foragers' encounter probability with food, decreased patch quality and resulted in higher GUDs (60% higher in the deepest relative to shallowest substrate) and lower harvests. A significant interaction between initial food abundance and substrate depth showed that both species were willing to dig deeper in patches with higher resource density. Patch size (surface area) had no effect on food harvest or the proportion of food harvested. Consequently, GUDAREA and GUDVOL increased in patches with a smaller surface area. Smaller patches appeared to hamper the dove's and cottontail's movement across the surface. Our results revealed that mourning doves and cottontails forage under imperfect information. Both species were able to respond to patch properties by biasing their feeding efforts toward rich and easy opportunities, however, mourning doves were more efficient at food harvesting. The interaction of patch area, volume and food abundance directly influenced food harvest. Such resource characters occur under natural situations where food varies in abundance, area of distribution, and accessibility. [source]


A Quantitative Conservation Approach for the Endangered Butterfly Maculinea alcon

CONSERVATION BIOLOGY, Issue 2 2004
MICHIEL F. WallisDeVries
The quality and size of habitat patches and their isolation from other patches are the main parameters for an assessment of population persistence, but translating persistence probabilities into practical measures is still a weak link in conservation management. I provide a quantitative conservation approach for the endangered myrmecophilous butterfly Maculinea alcon in the Netherlands. All 127 colonies known on heathland since 1990 were investigated for patch quality, size, and isolation. I assessed habitat quality in three 10 × 10 m plots for most colonies. Site occupancy in 1998,1999 was only 56%. Occupancy was best explained by a logistic regression including patch area, host ant presence, host plant abundance, overall heathland area, and connectivity between sites ( R2= 0.410, p < 0.0001); it correctly classified the occupied or vacant status for 82% of the sites. Connectivity contributed only 3.6% to the total explained variation of site occupancy, indicating that habitat characteristics were more important than isolation in determining population persistence at the examined scale level (>500 m). Grazing and sod cutting had a beneficial impact, but in combination these practices proved detrimental. Hydrological measures to prevent drainage were also associated with lowered occupancy. I used the different components in the logistic regression to formulate objective management recommendations. These consisted of sod cutting, reduction of management intensity, enlargement of habitat, or combinations of these recommendations. The results highlight the importance of careful management when site quality is determined by multiple factors. The quantitative conservation approach followed here can be fruitfully extended to other endangered species, provided enough is known about their ecological requirements and how management actions affect them. Resumen:,La preservación de fragmentos individuales es extremadamente importante para especies en peligro con capacidad de dispersión limitada. La calidad y tamaño de los fragmentos de hábitat y su aislamiento de otros fragmentos son los parámetros principales para la evaluación de la persistencia de la población, pero la traducción de probabilidades de persistencia en medidas prácticas aun es un eslabón débil en la gestión de conservación. Proporciono un método cuantitativo de conservación para la mariposa mirmecófila Maculinea alcon en peligro en Holanda. Se investigó a las 127 colonias conocidas en brezales desde 1990 para calidad, tamaño y aislamiento del fragmento. Evalué la calidad del hábitat en tres parcelas de 10 × 10 m en la mayoría de las colonias. La ocupación de sitios en 1998-1999 fue sólo 56%. La ocupación fue mejor explicada por regresión logística incluyendo la superficie del fragmento, presencia de hormigas huésped, abundancia de plantas huésped, superficie total del brezal y conectividad entre sitios ( R2= 0.410, p < 0.0001); clasificó el estatus de ocupado o vacante en 82% de los sitios. La conectividad contribuyó con solo 36% de la variación total de sitio de ocupación, lo que indica que las características de hábitat fueron más importantes que el aislamiento en la determinación de la persistencia de la población en el nivel de escala examinado (>500 m). El pastoreo y el corte de pasto tuvieron un impacto benéfico pero combinadas, estas prácticas fueron perjudiciales. Obras hidrológicas para prevenir la desecación también se asociaron con una disminución en la ocupación. Utilicé los diferentes componentes de la regresión logística para formular recomendaciones objetivas de gestión. Estas incluyeron el corte de pasto, reducción en la intensidad de manejo, aumento de hábitat o combinaciones de estas recomendaciones. Los resultados resaltan la importancia de la gestión cuidadosa cuando la calidad del sitio está determinada por múltiples factores. El método cuantitativo de preservación utilizado puede ser extendido exitosamente a otras especies en peligro, siempre que sean suficientemente conocidos sus requerimientos ecológicos y la forma en que le afectan las acciones de manejo. [source]


Deficit in community species richness as explained by area and isolation of sites

DIVERSITY AND DISTRIBUTIONS, Issue 3 2000
Hans Henrik Bruun
Abstract .,The potential community species richness was predicted for 85 patches of seminatural grassland in an agricultural landscape in Denmark. The basis of the prediction was a very large dataset on the vegetation, soil pH and topography in Danish grasslands and related communities. Species were inserted into potential species pools according to their preferences regarding soil acidity and water availability (expressed as potential solar irradiation), and to the ranges in these two factors observed in each grassland patch. The difference between the predicted and the observed patch-level species richness, community richness deficit, varied considerably among patches. Community richness deficit exhibited a negative relationship with patch area, and for small patches a positive relationship with patch isolation. [source]


The species-area relationship in the hoverfly (Diptera, Syrphidae) communities of forest fragments in southern France

ECOGRAPHY, Issue 2 2006
Annie Ouin
The effect of forest fragmentation was studied in hoverfly communities of 54 isolated forests (0.14,171 ha) in south west France. The positive relationship between species richness and wood patch area was investigated by testing the three hypotheses usually put forward to explain it: 1) the sampling effect hypothesis, 2) the patch heterogeneity hypothesis, 3) the hypothesis of equilibrium between distance from other patch (colonisation) and surface area of the patch (extinction). The syrphid species were divided into 3 ecological groups, based on larval biology as summarized in the "Syrph the Net" database: non forest species, facultative forest species and forest species. A total of 3317 adults belonging to 100 species, were captured in the 86 Malaise traps. Eight species were non forest (N=16), 65 facultative forest (N=2803) and 27 forest species (N=498). Comparison of the slopes of the species-area curves for species richness and species density per forest patch showed a strong sampling effect in the species-area relationship. Wood patch heterogeneity increased with wood patch area and positively influenced hoverflies richness. Less isolated wood patches presented high richness of forest species and low richness of non forest species. Only forest species richness seemed to respond to the equilibrium between surface area and isolation. Depending on which hypothesis explained best the species-area relationship, management recommendations to mitigate fragmentation effects were formulated at various spatial scales and for different stakeholders. [source]


Not seeing the ocean for the islands: the mediating influence of matrix-based processes on forest fragmentation effects

GLOBAL ECOLOGY, Issue 1 2006
John A. Kupfer
ABSTRACT The pervasive influence of island biogeography theory on forest fragmentation research has often led to a misleading conceptualization of landscapes as areas of forest/habitat and ,non-forest/non-habitat' and an overriding focus on processes within forest remnants at the expense of research in the human-modified matrix. The matrix, however, may be neither uniformly unsuitable as habitat nor serve as a fully,absorbing barrier to the dispersal of forest taxa. In this paper, we present a conceptual model that addresses how forest habitat loss and fragmentation affect biodiversity through reduction of the resource base, subdivision of populations, alterations of species interactions and disturbance regimes, modifications of microclimate and increases in the presence of invasive species and human pressures on remnants. While we acknowledge the importance of changes associated with the forest remnants themselves (e.g. decreased forest area and increased isolation of forest patches), we stress that the extent, intensity and permanence of alterations to the matrix will have an overriding influence on area and isolation effects and emphasize the potential roles of the matrix as not only a barrier but also as habitat, source and conduit. Our intention is to argue for shifting the examination of forest fragmentation effects away from a patch-based perspective focused on factors such as patch area and distance metrics to a landscape mosaic perspective that recognizes the importance of gradients in habitat conditions. [source]


Structural heterogeneity and productivity of a tall fescue pasture grazed rotationally by cattle at four stocking densities

GRASSLAND SCIENCE, Issue 1 2008
Maria Silvia Cid
Abstract The spatial heterogeneity in the structure and the productivity of the vegetation was examined in a tall fescue (Festuca arundinacea Schreb.) pasture rotationally grazed at four stocking densities in the Pampean region of Argentina. The examined pasture was grazed at the stocking densities of 3.6, 4.6, 5.6 and 6.6 animals ha,1 with a two-paddock 14-day rotational grazing system. Spatial distribution of plant height was examined as well as the percentages of short patch area (heavily utilized patches) or tall patch area (areas ungrazed or lightly defoliated). In addition, biomass, growth rate and relative growth rate were assessed for both short and tall patches. Grazing generated patchiness in vegetation structure and growth at all stocking densities. Increased stocking density caused an increase in the percentage of the short patch area in the paddocks. Short patches had relatively less live biomass than tall ones, but their relative growth rate was 31% higher than that of tall patches (0.021 ± 0.007 vs 0.016 ± 0.005 g DM g DM,1 day,1). The increase in stocking density enlarged the proportion of short patch areas with higher relative growth rate. The relative growth rate (average between short and tall patches) of the two highest stocking densities was 61.7% higher than that of the low stocking density treatments (0.023 ± 0.006 vs 0.014 ± 0.004 g DM g DM,1 day,1). Although the growth rate of the short patches did not exceed the value of the tall patches, the high value of relative growth rate appeared to indicate a higher photosynthetic capacity of the short patches. Moreover, live biomass did not decrease during the experimental period even in the short patch areas showing that, in the particular conditions of our study, overgrazing did not occur at the range of the stocking density examined. [source]


Boundary element analysis of curved cracked panels with adhesively bonded patches

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 1 2003
P. H. Wen
Abstract A new boundary element formulation for analysis of curved cracked panels with adhesively bonded patches is presented in this paper. The effect of the adhesive layer is modelled by distributed body forces (i.e. two in-plane forces, two moments and one out-of-plane force). A coupled boundary integral formulation of a shear deformable plate and two-dimensional plane stress elasticity is used to determine bending and membrane forces along the adhesive layer taking into consideration the compatibility conditions in the patch area. Two numerical examples are presented to demonstrate the efficiency of the proposed method. It is shown that the out-of-plane bending behaviour and panel curvature have significant influence on the magnitude of the stress intensity factors. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Behavioural responses to habitat patch boundaries restrict dispersal and generate emigration,patch area relationships in fragmented landscapes

JOURNAL OF ANIMAL ECOLOGY, Issue 4 2003
Nicolas Schtickzelle
Summary 1We studied the consequences of behaviour at habitat patch boundaries on dispersal for the bog fritillary butterfly Proclossiana eunomia Esper in two networks of habitat differing in fragmentation and matrix quality. We tested for differences in responses to patch boundaries according to the fragmentation level of the network by analysing movement paths of adult butterflies. 2Butterflies systematically engaged in U-turns when they reached a boundary in the fragmented network while they crossed over boundaries in more than 40% of boundary encounters in the continuous one. 3We applied the Virtual Migration model (Hanski, Alho & Moilanen 2000) to capture,mark,recapture data collected in both networks. The model indicated (i) a lower dispersal rate and (ii) a lower survival during dispersal in the fragmented network. This latter difference is likely to be the key biological process leading to behavioural avoidance of patch boundary crossings. 4On the basis of this behavioural difference, we designed an individual-based simulation model to explore the relationship between patch area, boundary permeability and emigration rate. 5Predictions of the model fitted observed results of the effect of patch area on emigration rate according to fragmentation: butterflies are more likely to leave small patches than large ones in fragmented landscapes (where patch boundary permeability is low), while this relationship disappears in more continuous landscapes (where patch boundary permeability is high). [source]


Patch occupancy of North American mammals: is patchiness in the eye of the beholder?

JOURNAL OF BIOGEOGRAPHY, Issue 8 2003
Robert K. Swihart
Abstract Aim Intraspecific variation in patch occupancy often is related to physical features of a landscape, such as the amount and distribution of habitat. However, communities occupying patchy environments typically exhibit non-random distributions in which local assemblages of species-poor patches are nested subsets of assemblages occupying more species-rich patches. Nestedness of local communities implies interspecific differences in sensitivity to patchiness. Several hypotheses have been proposed to explain interspecific variation in responses to patchiness within a community, including differences in (1) colonization ability, (2) extinction proneness, (3) tolerance to disturbance, (4) sociality and (5) level of adaptation to prevailing environmental conditions. We used data on North American mammals to compare the performance of these ,ecological' hypotheses and the ,physical landscape' hypothesis. We then compared the best of these models against models that scaled landscape structure to ecologically relevant attributes of individual species. Location North America. Methods We analysed data on prevalence (i.e. proportion of patches occupied in a network of patches) and occupancy for 137 species of non-volant mammals and twenty networks consisting of four to seventy-five patches. Insular and terrestrial networks exhibited significantly different mean levels of prevalence and occupancy and thus were analysed separately. Indicator variables at ordinal and family levels were included in models to correct for effects caused by phylogeny. Akaike's information criterion was used in conjunction with ordinary least squares and logistic regression to compare hypotheses. Results A patch network's physical structure, indexed using patch area and isolation, received the greatest support among models predicting the prevalence of species on insular networks. Niche breadth (diet and habitat) received the greatest support for predicting prevalence of species occupying terrestrial networks. For both insular and terrestrial systems, physical features (patch area and isolation) received greater support than any of the ecological hypotheses for predicting species occupancy of individual patches. For terrestrial systems, scaling patch area by its suitability to a focal species and by individual area requirements of the species, and scaling patch isolation by species-specific dispersal ability and niche breadth, resulted in models of patch occupancy that were superior to models relying solely on physical landscape features. For all selected models, unexplained levels of variation were high. Main conclusions Stochasticity dominated the systems we studied, indicating that random events are probably quite important in shaping local communities. With respect to deterministic factors, our results suggest that forces affecting species prevalence and occupancy may differ between insular and terrestrial systems. Physical features of insular systems appeared to swamp ecological differences among species in determining prevalence and occupancy, whereas species with broad niches were disproportionately represented in terrestrial networks. We hypothesize that differential extinction over long time periods in highly variable networks has driven nestedness of mammalian communities on islands, whereas differential colonization over shorter time-scales in more homogeneous networks probably governed the local structure of terrestrial communities. Our results also demonstrate that integration of a species' ecological traits with physical features of a patch network is superior to reliance on either factor separately when attempting to predict the species' probability of patch occupancy in terrestrial systems. [source]


Effects of patch size and density on flower visitation and seed set of wild plants: a pan-European approach

JOURNAL OF ECOLOGY, Issue 1 2010
Jens Dauber
Summary 1.,Habitat fragmentation can affect pollinator and plant population structure in terms of species composition, abundance, area covered and density of flowering plants. This, in turn, may affect pollinator visitation frequency, pollen deposition, seed set and plant fitness. 2.,A reduction in the quantity of flower visits can be coupled with a reduction in the quality of pollination service and hence the plants' overall reproductive success and long-term survival. Understanding the relationship between plant population size and/or isolation and pollination limitation is of fundamental importance for plant conservation. 3.,We examined flower visitation and seed set of 10 different plant species from five European countries to investigate the general effects of plant populations size and density, both within (patch level) and between populations (population level), on seed set and pollination limitation. 4.,We found evidence that the effects of area and density of flowering plant assemblages were generally more pronounced at the patch level than at the population level. We also found that patch and population level together influenced flower visitation and seed set, and the latter increased with increasing patch area and density, but this effect was only apparent in small populations. 5.,Synthesis. By using an extensive pan-European data set on flower visitation and seed set we have identified a general pattern in the interplay between the attractiveness of flowering plant patches for pollinators and density dependence of flower visitation, and also a strong plant species-specific response to habitat fragmentation effects. This can guide efforts to conserve plant,pollinator interactions, ecosystem functioning and plant fitness in fragmented habitats. [source]


A novel investigation on size reduction of a frequency selective surface

MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, Issue 11 2007
M. K. Pain
Abstract The study presents theoretical and experimental investigation of a novel, reduced size Microstrip Frequency Selective Surface. The novel design is achieved by cutting some rectangular slots at four sides of a square patch. Compared with conventional square patch Frequency Selective Surface (FSS), this slotted square patch Microstrip FSS can achieve reduction in patch area of 36%. The structure acts like a band pass filter with a resonant frequency 8 GHz. Both theoretical and experimental investigations are done. Theoretical investigation is done by IE3D software. Experimental investigation is performed using standard microwave test bench. © 2007 Wiley Periodicals, Inc. Microwave Opt Technol Lett 49: 2820,2821, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.22833 [source]


Edge effects as the principal cause of area effects on birds in fragmented secondary forest

OIKOS, Issue 6 2010
Cristina Banks-Leite
Bird communities in tropical forests are strongly affected by both patch area and habitat edges. The fact that both effects are intrinsically confounded in space raises questions about how these two widely reported ecological patterns interact, and whether they are independent or simply different spatial manifestations of the same phenomenon. Moreover, do small patches of secondary forest, in landscapes where the most sensitive species have gone locally extinct, exhibit similar patterns to those previously observed in fragmented and continuous primary forests? We addressed these questions by testing edge-related differences in vegetation structure and bird community composition at 31 sites in fragmented and continuous landscapes in the imperilled Atlantic forest of Brazil. Over a two-year period, birds were captured with mist nets to a standardized effort of 680 net-hours at each site (,22 000 net-hours resulting in 3381 captures from 114 species). We found that the bird community in patches of secondary forest was degraded in species composition compared to primary continuous forest, but still exhibited a strong response to edge effects. In fragmented secondary forests, edge and area effects also interacted, such that the magnitude of edge to interior differences on bird community composition declined markedly with patch size. The change in bird species composition between forest interiors and edges was similar to the change in community composition between large and small patches (because species had congruent responses to edge and area), but after controlling for edge effects community composition was no longer affected by patch area. Our results show that although secondary forests hold an impoverished bird community, ecological patterns such as area and edge effects are similar to those reported for primary forests. Our data provide further evidence that edge effects are the main drivers of area effects in fragmented landscapes. [source]


Patch area, substrate depth, and richness affect giving-up densities: a test with mourning doves and cottontail rabbits

OIKOS, Issue 11 2009
Mohammad A. Abu Baker
We compared the foraging behavior of mourning doves Zenaida macroura and cottontail rabbits Sylvilagus floridanus in patches that varied in initial food abundance, surface area and substrate depth. We measured giving-up densities (GUD), food harvest and proportion of food harvested to investigate their ability to respond to characteristics of resource patches. GUDs have been analyzed in three ways: grams of per patch, grams per unit surface area (GUDAREA), and grams per unit volume of sand (GUDVOL). Mourning doves and cottontails exhibited similar responses to resource density and sand depth. Both foragers detected and responded to variation in initial food abundance. The proportion of food harvested from a patch increased from 40.7, 43.8 to 48.3% (for the doves) and 34.9, 35.8 to 38.4% (for the rabbits) in patches of low, medium and high initial food abundance, respectively. Deeper substrates reduced the foragers' encounter probability with food, decreased patch quality and resulted in higher GUDs (60% higher in the deepest relative to shallowest substrate) and lower harvests. A significant interaction between initial food abundance and substrate depth showed that both species were willing to dig deeper in patches with higher resource density. Patch size (surface area) had no effect on food harvest or the proportion of food harvested. Consequently, GUDAREA and GUDVOL increased in patches with a smaller surface area. Smaller patches appeared to hamper the dove's and cottontail's movement across the surface. Our results revealed that mourning doves and cottontails forage under imperfect information. Both species were able to respond to patch properties by biasing their feeding efforts toward rich and easy opportunities, however, mourning doves were more efficient at food harvesting. The interaction of patch area, volume and food abundance directly influenced food harvest. Such resource characters occur under natural situations where food varies in abundance, area of distribution, and accessibility. [source]


Does avian species richness in natural patch mosaics follow the forest fragmentation paradigm?

ANIMAL CONSERVATION, Issue 1 2007
D. C. Pavlacky Jr.
Abstract As one approaches the north-eastern limit of pinyon (Pinus spp.) juniper (Juniperus spp.) vegetation on the Colorado Plateau, USA, woodland patches become increasingly disjunct, grading into sagebrush (Artemisia spp.)-dominated landscapes. Patterns of avian species richness in naturally heterogeneous forests may or may not respond to patch discontinuity in the same manner as bird assemblages in fragmented agricultural systems. We used observational data from naturally patchy woodlands and predictions derived from studies of human-modified agricultural forests to estimate the effects of patch area, shape, isolation and distance to contiguous woodland on avian species richness. We predicted that patterns of species richness in naturally patchy juniper woodlands would differ from those observed in fragmented agricultural systems. Our objectives were to (1) estimate the effect of naturally occurring patch structure on avian species richness with respect to habitat affinity and migratory strategy and (2) assess the concordance of the effects to predictions from agricultural forest systems. We used the analogy between populations and communities to estimate species richness, where species are treated as individuals in the application of traditional capture,recapture theory. Information-theoretic model selection showed that overall species richness was explained primarily by the species area relationship. There was some support for a model with greater complexity than the equilibrium theory of island biogeography where the isolation of large patches resulted in greater species richness. Species richness of woodland-dwelling birds was best explained by the equilibrium hypothesis with partial landscape complementation by open-country species in isolated patches. Species richness within specific migratory strategies showed concomitant increases and no shifts in species composition along the patch area gradient. Our results indicate that many patterns of species richness considered to be fragmentation effects may be general consequences of patch discontinuity and are ubiquitous in naturally heterogeneous systems. There was no evidence for the effects of patch shape and distance to contiguous woodland in juniper woodland, suggesting edge effects and dependence upon regional species pools are characteristics of fragmented agricultural systems. Natural patch mosaics may provide benchmarks for evaluating fragmentation effects and managing forests by mimicking natural landscape patterns. [source]


Nestedness, SLOSS and conservation networks of boreal herb-rich forests

APPLIED VEGETATION SCIENCE, Issue 3 2009
Päivi J. Hokkanen
Abstract Question: Herb-rich patches are biodiversity hotspots for vascular plants in boreal forests. We ask: Do species occurrences on herb-rich patches show a non-random, nested structure?; Does patch size relate to richness of edaphically demanding and red-listed species?; Does a set of small patches support more edaphically demanding and red-listed species than a few large patches of the equal area? Location: Eastern Finland (63°04,N, 29°52,E), boreal vegetation zone. Data: Vegetation mapping of 90 herb-rich sites, varying from 0.05 to 6.93 ha in size and belonging to six different, predetermined forest site types. Results: Using the RANDNEST procedure, only one site type showed a significantly nested pattern, and patch area was not related to "nestedness" in any of the site types. The number of edaphically demanding and red-listed plant species was positively correlated with a patch size in three forest site types. In all site types, a set of small patches had more edaphically demanding and red-listed species than did a few large patches of the equal total area. Conclusions: For conservation, it is essential to protect representative sets of different herb-rich forest site types because flora varies between the site types. Within herb-rich forest site types, several small areas may support representative species composition. However, successful conservation requires thorough species inventories, because of the high level of heterogeneity between the herb-rich patches. [source]


Impact of landscape spatial pattern on liana communities in tropical rainforests at Los Tuxtlas, Mexico

APPLIED VEGETATION SCIENCE, Issue 3 2009
Víctor Arroyo-Rodríguez
Abstract Questions: What are the species composition and species and stem densities of liana communities in tropical landscapes of different deforestation levels? Which spatial attributes (forest cover, patch area, shape and isolation) have the strongest influence on liana communities in these landscapes? Location: Forty-five rainforest patches in Los Tuxtlas Biosphere Reserve, Mexico. Methods: In three landscapes with different deforestation levels (HDL=4%; IDL=11%; and LDL=24% of remaining forest cover) liana communities (DBH ,2.5 cm) were characterized in 15 randomly selected patches per landscape (10 50 m × 2 m transects per patch=0.1 ha), and evaluated the effects of patch area, shape and isolation on liana species and stem density (number of species and stems per 0.1 ha). Results: A total of 64 taxa and 24 families were sampled. Species composition differed highly among landscapes, with HDL being the most dissimilar landscape. The response of lianas to landscape spatial pattern differed significantly among landscapes. Proximity to villages had a strong positive effect on species and stem densities in LDL and IDL. There was a sharp decrease in liana stem density in HDL, with four patches (27%) found to be unoccupied by lianas. Conclusions: Fragmentation may have a positive effect on lianas, partly because of edge effects. This positive effect seems to be limited by the proportion of remaining forest cover in the landscape, as the liana communities had collapsed in the most deforested landscape. [source]


Connectivity and patch area in a coastal marine landscape: Disentangling their influence on local species richness and composition

AUSTRAL ECOLOGY, Issue 6 2009
ANA INÉS BORTHAGARAY
Abstract Landscape ecology emerged as a terrestrial discipline to evaluate the effect of spatial configuration of natural systems on ecological patterns. The advances in marine systems have been comparatively scarce perhaps as a consequence of a long-standing view about the greater dispersal potential of marine species and its effect on the spatial homogenization of marine landscapes. Herein we used an intertidal rocky system as a model to analyse the effect of landscape attributes on local species richness and composition. We evaluated the effect of patch area, landscape connectivity and salinity gradient on local species richness of macro-invertebrates, and the effect of geographic distance on species similarity. We sampled 19 rocky patches along the Uruguayan Atlantic coast one time during the spring of 2003. The relative contribution of the variables assessed on specific richness of sessile, mobile and total macrofauna was analysed with a stepwise multiple linear regression. For the mobile macrofaunal richness, we also incorporated the sessile macrofaunal richness as another independent variable. The effect of geographic distance on biological similarity was assessed by a Mantel test. We showed that landscape connectivity, as a descriptor of the average physical isolation of a biological community in the landscape, is an important factor explaining the community species richness for sessile macrofauna, what indirectly increases the mobile macrofaunal richness. The geographic distance between sites was negatively related to species similarity. We suggest that at the landscape scale, connectivity among sites can be important to understand the local structure of marine communities, particularly in rocky intertidal systems. Also the distance-decay of similarity in community composition provides a useful descriptor of how biological composition varies along a physical gradient. Our results contribute to reinforce the view that mesoscale connectivity (101,2 km) in coastal marine landscapes plays a more important role in local community structure than previously assumed. [source]


Structural heterogeneity and productivity of a tall fescue pasture grazed rotationally by cattle at four stocking densities

GRASSLAND SCIENCE, Issue 1 2008
Maria Silvia Cid
Abstract The spatial heterogeneity in the structure and the productivity of the vegetation was examined in a tall fescue (Festuca arundinacea Schreb.) pasture rotationally grazed at four stocking densities in the Pampean region of Argentina. The examined pasture was grazed at the stocking densities of 3.6, 4.6, 5.6 and 6.6 animals ha,1 with a two-paddock 14-day rotational grazing system. Spatial distribution of plant height was examined as well as the percentages of short patch area (heavily utilized patches) or tall patch area (areas ungrazed or lightly defoliated). In addition, biomass, growth rate and relative growth rate were assessed for both short and tall patches. Grazing generated patchiness in vegetation structure and growth at all stocking densities. Increased stocking density caused an increase in the percentage of the short patch area in the paddocks. Short patches had relatively less live biomass than tall ones, but their relative growth rate was 31% higher than that of tall patches (0.021 ± 0.007 vs 0.016 ± 0.005 g DM g DM,1 day,1). The increase in stocking density enlarged the proportion of short patch areas with higher relative growth rate. The relative growth rate (average between short and tall patches) of the two highest stocking densities was 61.7% higher than that of the low stocking density treatments (0.023 ± 0.006 vs 0.014 ± 0.004 g DM g DM,1 day,1). Although the growth rate of the short patches did not exceed the value of the tall patches, the high value of relative growth rate appeared to indicate a higher photosynthetic capacity of the short patches. Moreover, live biomass did not decrease during the experimental period even in the short patch areas showing that, in the particular conditions of our study, overgrazing did not occur at the range of the stocking density examined. [source]


A compact, broadband antenna for planetary surface-to-surface wireless communications

MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, Issue 3 2006
Philip Barr
Abstract The compact microstrip monopole antenna (CMMA) is a novel antenna design that combines a microstrip patch antenna with a 3D structure to attain a highly directive, broadband, compact antenna. A tri-lobed patch (TLP) is designed to minimize the patch's area while reducing the antenna's operating frequency. A grounding wall (GW) connects the patch to the ground plane and a vertical-enclosure wall (VEW) extends up, away from portions of the patch's perimeter. This VEW supplies the antenna with a higher directivity in the radial direction and also reduces the operating frequency. The CMMA was designed to operate at 2.23 GHz, but experimental results have shown this antenna resonates at 2.05 GHz which is on the order of approximately ,0/11.6 with respect to the antenna's largest dimension, with a directivity and bandwidth of 6.0 dBi and 130 MHz (6.3%), respectively. This miniature, radially emitting antenna makes the CMMA attractive for planetary-based surface-to-surface communications. © 2006 Wiley Periodicals, Inc. Microwave Opt Technol Lett 48: 521,524, 2006; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.21397 [source]