Home About us Contact | |||
Past Climate (past + climate)
Terms modified by Past Climate Selected AbstractsOn linking interannual tree ring variability with observations of whole-forest CO2 fluxGLOBAL CHANGE BIOLOGY, Issue 8 2006ADRIAN V. ROCHA Abstract We used a 10-year record of the CO2 flux by an old growth boreal forest in central Manitoba (the Northern Old Black Spruce Site (NOBS)), a ,150-year-old Picea mariana [Mill.] stand) to determine whether and how whole-forest CO2 flux is related to tree ring width. We compared a 37-year ring width chronology collected at NOBS to a second chronology that was collected at a nearby Black Spruce stand with a different disturbance history, and also to three measures of annual whole-forest photosynthesis [gross ecosystem production (GEP)], two measures of annual respiration (R), and one measure of annual carbon balance [net ecosystem production (NEP)]. The year-to-year ring width fluctuations were well correlated between the two sites; increasing our confidence in the NOBS chronology and implying that ring width variation is driven and synchronized by the physical environment. Both chronologies exhibited serial correlation, with a fluctuation in ring width that had an apparent periodicity of ,7 years. Neither chronology was correlated with variation in annual precipitation or temperature. Ring width and NEP increased, while R decreased from 1995 to 2004. GEP either remained constant or decreased from 1995 to 2004, depending on which measure was considered. The lack of relationship between ring width and GEP may indicate that ring growth is controlled almost entirely by something other than carbon uptake. Alternative explanations for the ring width chronologies include the possibility that wood production varies as a result of shifts in respiration, or that an unidentified aspect of the environment, rather than the balance between GEP and respiration, controls wood production. The serial correlation in ring width may be related to increases and decreases in carbohydrate pools, or to gradual changes in nutrient availability, pathogens, herbivores, soil frost or soil water table. The cause or causes of serial correlation, and the controls on the allocation of photosynthate to wood production, emerge as critical uncertainties for efforts in predicting the carbon balance of boreal ecosystems and inferring past climate from tree rings. [source] Differential effects of past climate warming on mountain and flatland species distributions: a multispecies North American mammal assessmentGLOBAL ECOLOGY, Issue 1 2007Robert Guralnick ABSTRACT Aim, The magnitude of predicted range shifts during climate change is likely to be different for species living in mountainous environments compared with those living in flatland environments. The southern edges of ranges in mountain species may not shift northwards during warming as populations instead migrate up available elevational gradients; overall latitudinal range appears therefore to expand. In contrast, flatland species should shift range centroids northwards but not expand or contract their latitudinal range extent. These hypotheses were tested utilizing Late Pleistocene and modern occurrence data. Location, North America. Methods, The location and elevation of modern and Late Pleistocene species occurrences were collected from data bases for 26 species living in mountain or flatland environments. Regressions of elevation change over latitude, and southern and northern range edges were calculated for each species for modern and fossil data sets. A combination of regressions and anovas were used to test whether flatland species shift range edges and latitudinal extents more than mountain species do. Results, Flatland species had significantly larger northward shifts at southern range edges than did mountain-dwelling species from the Late Pleistocene to the present. There was also a significant negative correlation between the amount of change in the latitude of the southern edge of the range and the amount of elevational shifting from the Late Pleistocene to the present. Although significant, only c. 25% of the variance could be explained by this relationship. In addition, there was a weak indication that overall range expansion was less in flatland-dwelling than in mountain-dwelling species. Main conclusions, The approach used here was to examine past species' range responses to warming that occurred after the last ice ages as a means to better predict potential future responses to continued warming. The results confirm predictions of differential southern edge and overall range shifts for species occupying mountain and flatland regions in North America. The findings may be broadly applicable in other regions, thus allowing better modelling of future range and distribution related responses. [source] Reconstruction of a 1436-year soil moisture and vegetation water use history based on tree-ring widths from Qilian junipers in northeastern Qaidam Basin, northwestern ChinaINTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 1 2008Zhi-Yong Yin Abstract Tree-ring widths have been used widely in studies of environmental changes and reconstructions of past climate. Eleven tree-ring chronologies of approximately 800,1500 years long were developed from Qilian junipers (Sabina przewalskii Kom.) for northeastern Qaidam Basin, along the margin of the Qinghai,Tibetan Plateau. Previous studies have revealed that water usage stress is the most limiting factor for tree growth in the study region. To evaluate the impact of the combined effects of temperature and precipitation changes over time, we performed water balance modelling using 1955,2002 meteorological data. We found that the tree-ring widths were strongly correlated with variables representing soil moisture conditions obtained from the water balance model. Specifically we considered actual evapotranspiration (AE) to represent the combined effect of water use demand and moisture availability, deficit as the difference between potential evapotranspiration (PE) and AE to represent the severity of water use stress, and relative soil moisture as the measure of moisture availability. For certain individual monthly and seasonal combinations, the tree-ring chronologies explained up to 80% of the variation in the soil moisture variables in regression analysis, indicating very good potential for reconstruction of regional soil moisture conditions in the past. These soil moisture variables outperformed precipitation and Palmer's drought severity index in most cases. We reconstructed the soil moisture conditions from 566 AD to 2001, which revealed major dry and wet periods and a general trend toward a wetter condition during the most recent 300 years. By comparing with other proxies in the region, we concluded that the moisture conditions reconstructed from tree-ring widths very well reflected the climate variability at the interannual and interdecadal scales. Copyright © 2007 Royal Meteorological Society [source] Pollen-inferred palaeoclimate reconstructions in mountain areas: problems and perspectives,JOURNAL OF QUATERNARY SCIENCE, Issue 6 2006Elena Ortu Abstract Transfer functions are an efficient tool for the quantitative reconstruction of past climate from low to mid-elevation pollen sites. However, the application of existing methods to high-altitude pollen assemblages frequently leads to unrealistic results. In the aim of understanding the causes of these biases, the standard ,best modern analogue' method has been applied to two high-altitude pollen sequences to provide quantitative climate estimates for the Lateglacial and Holocene periods. Both pollen sequences (Laghi dell'Orgials, 2130,m, SW aspect and Lago delle Fate, 2240,m, E aspect) are located in the subalpine belt, on opposing sides of the St. Anna di Vinadio Valley (Italian Maritime Alps). Different results were obtained from the two sequences. The largest differences occurred in palaeotemperature reconstruction, with notable differences in both the values and trends at each site. These biases may be attributed to: (1) a lack of high elevation ,best modern analogues' in the database of modern samples; (2) the problem of pollen taxa that have multiple climatic significance; (3) problems related to the complexity of mountainous ecosystems, such as the phenomenon of uphill transport of tree pollen by wind. Possible improvements to the reconstruction process are discussed. Copyright © 2006 John Wiley & Sons, Ltd. [source] Modification of impact craters in the northern plains of Mars: Implications for Amazonian climate historyMETEORITICS & PLANETARY SCIENCE, Issue 10 2006M. A. Kreslavsky Two of the 130 craters have unusually rough ejecta; they are deep, have steep walls, and are apparently the youngest in the population. Icy mantles filling the local subkilometer-scale topographic lows is the main contribution to ejecta smoothing, which occurs at a time scale on the order of tens of Myr. Wall degradation and crater shallowing generally occur at longer time scales, comparable to the duration of the Amazonian period. Many craters are shallow due to filling of the crater with specific ice-rich material of uncertain origin. We use our collected data to infer the nature of the past climate back through the Amazonian, a period prior to ,10,20 Myr ago, when orbital parameter solutions are chaotic and one must rely on geological data to infer climate conditions. We conclude that moderately high obliquity and wide obliquity variations were probable during the last 40,160 Myr. We tentatively conclude that high obliquity peaks (>40,45°) may have occurred episodically through the last 210,430 Myr. A sharp step in the frequency distribution of wall steepness at 20° may indicate a geologically long period prior to that time where obliquity never exceeded 40,45°. [source] Worldwide allele frequencies of the human apolipoprotein E gene: Climate, local adaptations, and evolutionary historyAMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 1 2010Dan T.A. Eisenberg Abstract The ,4 allele of the apolipoprotein E (APOE) gene is associated with increased cholesterol levels and heart disease. Population allele frequencies of APOE have previously been shown to vary, with ,4 frequencies generally increasing with latitude. We hypothesize that this trend resulted from natural selection protecting against low-cholesterol levels. In high-latitude cold environments and low-latitude hot environments, metabolic rate is elevated, which could require higher cholesterol levels. To explore this hypothesis, we compiled APOE allele frequencies, latitude, temperature, and elevation from populations around the world. ,4 allele frequencies show a curvilinear relationship with absolute latitude, with lowest frequencies found in the mid-latitudes where temperatures generally require less expenditure on cooling/thermogenesis. Controlling for population structure in a subset of populations did not appreciably change this pattern of association, consistent with selection pressures that vary by latitude shaping ,4 allele frequencies. Temperature records also predict APOE frequency in a curvilinear fashion, with lowest ,4 frequencies at moderate temperatures. The model fit between historical temperatures and ,4 is less than between latitude and ,4, but strengthened after correcting for estimated temperature differences during the Paleolithic. Contrary to our hypothesis, we find that elevation did not improve predictive power, and an integrated measure of the cholesterol effect of multiple APOE alleles was less related to latitude than was ,4 alone. Our results lend mixed support for a link between past temperature and human APOE allele distribution and point to the need to develop better models of past climate in future analyses. Am J Phys Anthropol 143:13,20, 2010. © 2010 Wiley-Liss, Inc. [source] Environmental controls and patterns of cumulative radial increment of evergreen tree species in montane, temperate rainforests of Chiloé Island, southern ChileAUSTRAL ECOLOGY, Issue 3 2009CECILIA A. PÉREZ Abstract We investigated the local environmental controls on daily fluctuations of cumulative radial increment and cambial hydration of three dominant, evergreen tree species from montane, Coastal rainforests of Chiloé Island, Chile (42° 22, S). During 2 years (1997,1998 and 1998,1999) we recorded hourly cumulative radial increments using electronic band dendrometers in the long-lived conifer Fitzroya cupressoides (Cupressaceae), the evergreen broad-leaved Nothofagus nitida (Nothofagaceae), and the narrow-leaved conifer Podocarpus nubigena (Podocarpaceae). We also measured soil and cambial tissue hydration using capacitance sensors, together with air and soil temperature and rainfall during the period of the study. In addition, we collected cores of these tree species to evaluate how dendrometer measurements reflect annual tree ring width. One-year long daily time series of cumulative radial increments suggests that radial growth of Fitzroya cupressoides was initiated slowly in early spring, with a maximum in early summer. Multiple regressions showed positive relations between daily precipitation and radial index (i.e. the difference in cumulative radial increment of two consecutive days) in the three species. According to path analysis there was a significant direct effect of changes in tree hydration on radial index of the three focal species. In emergent, pioneer species such as Nothofagus and Fitzroya, radial index was negatively affected by changes in maximum air temperature and photosynthetically active radiation, probably because of high evapotranspiration demand on warm sunny days. The shade-tolerant species Podocarpus nubigena was positively affected by photosynthetically active radiation. Our diel scale findings support the use of tree ring widths for reconstructing past climate in these southern temperate forests and provide evidence that rainforest trees may be highly sensitive to future declines in rainfall and temperature increases during summer. [source] Detecting Tropical Forests' Responses to Global Climatic and Atmospheric Change: Current Challenges and a Way ForwardBIOTROPICA, Issue 1 2007Deborah A. ClarkArticle first published online: 21 DEC 200 ABSTRACT Because of tropical forests' disproportionate importance for world biodiversity and for the global carbon cycle, we urgently need to understand any effects on these ecosystems from the ongoing changes in climate and atmosphere. This review, intended to complement existing data reviews on this topic, focuses on three major classes of challenges that we currently face when trying to detect and interpret directional changes in tropical forests. One is the very limited existing information on the historical context of study sites. Lasting effects from past climate, natural disturbances, and/or human activities could be significantly affecting current-day processes in tropical forests and need to be investigated for all active field sites. Second, while progress has been made in recent years on standardizing and refining research approaches, a number of methods- and data-limitations continue to affect efforts both to detect within-forest changes and to relate them to ongoing environmental change. Important outstanding needs are improved sampling designs, longer time-series of observations, filling key data gaps, and data access. Finally, forest responses to ongoing environmental change are complex. The effects of many simultaneously changing environmental factors are integrated by the plants, and their responses can involve significant lags, carryovers, and non-linearities. Specifying effects of individual environmental changes, however, is required for accurate ecosystem-process models and thus for projecting future impacts on these forests. After discussing these several types of challenges and ways to address them, I conclude with a priority agenda for this critical area of research. Abstract in Spanish is available at http://www.blackwell-synergy.com/loi/btp. RESUMEN Debido a la importancia desproporcionada de los bosques tropicales para la biodiversidad mundial y para el ciclo global del carbono, es urgente identificar los impactos sobre estos ecosistemas provocados por los cambios actuales en el clima y en la atmósfera. Este artículo de revisión, escrito con el propósito de complementar otras revisiones recientes, se enfoca en tres principales clases de retos que enfrentamos actualmente en la detección e interpretación de cambios direccionales en los bosques tropicales. Primero es la gran escasez de información histórica acerca de los sitios de estudio. Los procesos actuales en los bosques tropicales pueden reflejar los efectos prolongados del pasado climático, las perturbaciones naturales y/o las actividades humanas, por lo que deben de ser investigados en todos los sitios actuales de estudio. Segundo, a pesar de avances recientes en la estandarización y el refinamiento de los métodos de investigación, nuestra habilidad para detectar cambios en los bosques y ligarlos a los grandes cambios ambientales sigue siendo limitada. Para garantizar avances en el área se requiere mejorar los diseños de muestreo, extender las series de observación en el tiempo a plazos mayores, llenar ciertos vacíos claves en el conocimiento, y facilitar el acceso a los datos existentes. Por último, se requiere de enfoques que tomen en cuenta la complejidad de las respuestas de los bosques a los cambios ambientales. Las plantas integran los efectos de cambios simultáneos en múltiples factores ambientales, y sus respuestas pueden ser no lineales e incluir efectos de retraso y acarreo. No obstante, es importante también especificar los efectos individuales de los diferentes cambios ambientales para afinar los modelos de procesos a nivel del ecosistema, y así poder proyectar los impactos futuros sobre estos bosques. Después de discutir dichos retos y estrategias para enfrentarlos, concluyo con una agenda de prioridades para esta área crítica de investigación. [source] The radiation of the Cape flora, southern AfricaBIOLOGICAL REVIEWS, Issue 4 2003H. P. LINDER ABSTRACT The flora of the south-western tip of southern Africa, the Cape flora, with some 9000 species in an area of 90 000 km2 is much more speciose than can be expected from its area or latitude, and is comparable to that expected from the most diverse equatorial areas. The endemism of almost 70%, on the other hand, is comparable to that found on islands. This high endemism is accounted for by the ecological and geographical isolation of the Cape Floristic Region, but explanations for the high species richness are not so easily found. The high species richness is accentuated when its taxonomic distribution is investigated: almost half of the total species richness of the area is accounted for by 33,Cape floral clades'. These are clades which may have initially diversified in the region, and of which at least half the species are still found in the Cape Floristic Region. Such a high contribution by a very small number of clades is typical of island floras, not of mainland floras. The start of the radiation of these clades has been dated by molecular clock techniques to between 18 million years ago (Mya)(Pelargonium) and 8 Mya (Phylica), but only six radiations have been dated to date. The fossil evidence for the dating of the radiation is shown to be largely speculative. The Cenozoic environmental history of southern Africa is reviewed in search of possible triggers for the radiations, climatic changes emerge as the most likely candidate. Due to a very poor fossil record, the climatic history has to be inferred from larger scale patterns, these suggest large-scale fluctuations between summer wet (Palaeocene, Early Miocene)and summer dry climates (Oligocene, Middle Miocene to present). The massive speciation in the Cape flora might be accounted for by the diverse limitations to gene flow (dissected landscapes, pollinator specialisation, long flowering times allowing much phenological specialisation), as well as a richly complex environment providing a diversity of selective forces (geographically variable climate, much altitude variation, different soil types, rocky terrain providing many micro-niches, and regular fires providing both intermediate disturbances, as well as different ways of surviving the fires). However, much of this is based on correlation, and there is a great need for (a)experimental testing of the proposed speciation mechanisms, (b)more molecular clock estimates of the age and pattern of the radiations, and (c)more fossil evidence bearing on the past climates. [source] |