Home About us Contact | |||
Passive System (passive + system)
Selected AbstractsDesign of passive systems for control of inelastic structuresEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 6 2009Gian Paolo Cimellaro Abstract A design strategy for control of buildings experiencing inelastic deformations during seismic response is formulated. The strategy is using weakened, and/or softened, elements in a structural system while adding passive energy dissipation devices (e.g. viscous fluid devices, etc.) in order to control simultaneously accelerations and deformations response during seismic events. A design methodology is developed to determine the locations and the magnitude of weakening and/or softening of structural elements and the added damping while insuring structural stability. A two-stage design procedure is suggested: (i) first using a nonlinear active control algorithm, to determine the new structural parameters while insuring stability, then (ii) determine the properties of equivalent structural parameters of passive system, which can be implemented by removing or weakening some structural elements, or connections, and by addition of energy dissipation systems. Passive dampers and weakened elements are designed using an optimization algorithm to obtain a response as close as possible to an actively controlled system. A case study of a five-story building subjected to El Centro ground motion, as well as to an ensemble of simulated ground motions, is presented to illustrate the procedure. The results show that following the design strategy, a control of both peak inter-story drifts and total accelerations can be obtained. Copyright © 2008 John Wiley & Sons, Ltd. [source] Experimental study of the semi-active control of building structures using the shaking tableEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 15 2003Qing Sun Abstract A magnetorheological (MR) damper has been manufactured and tested and a non-linear model is discussed. The parameters for the model are identified from an identification set of experimental data; these parameters are then used to reconstruct the force vs. displacement and the force vs. velocity hysteresis cycles of the MR damper for the hysteretic model. Then experiments are conducted on a three-storey frame model using impact excitation, which identifies dynamic parameters of the model equipped with and without the MR damper. Natural frequencies, damping ratios and mode shapes, as well as structural properties, such as the mass, stiffness and damping matrices, are obtained. A semi-active control method such as a variable structure controller is studied. Based on the ,reaching law' method, a feedback controller is presented. In order to evaluate the efficiency of the control system and the effect of earthquake ground motions, both numerical analysis and shaking table tests of the model, with and without the MR damper, have been carried out under three different ground motions: El Centro 1940, Taft 1952, and Ninghe 1976 (Tangshan Earthquake in Chinese). It is found from both the numerical analysis and the shaking table tests that the maximum accelerations and relative displacements for all floors are significantly reduced with the MR damper. A reasonable agreement between the results obtained from the numerical analysis and those from the shaking table tests is also observed. On the other hand, tests conducted at different earthquake excitations and various excitation levels demonstrate the ability of the MR damper to surpass the performance of a comparable passive system in a variety of situations. Copyright © 2003 John Wiley & Sons, Ltd. [source] Passivity-based sliding mode control for nonlinear systemsINTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, Issue 9 2008Ali J. Koshkouei Abstract Passivity with sliding mode control for a class of nonlinear systems with and without unknown parameters is considered in this paper. In fact, a method for deriving a nonlinear system with external disturbances to a passive system is considered. Then a passive sliding mode control is designed corresponding to a given storage function. The passivity property guarantees the system stability while sliding mode control techniques assures the robustness of the proposed controller. When the system includes unknown parameters, an appropriate updated law is obtained so that the new transformed system is passive. The passivation property of linear systems with sliding mode is also analysed. The linear and nonlinear theories are applied to a simple pendulum model and the gravity-flow/pipeline system, respectively. Copyright © 2008 John Wiley & Sons, Ltd. [source] Linear passive stationary scattering systems with Pontryagin state spacesMATHEMATISCHE NACHRICHTEN, Issue 13-14 2006D. Z. Arov Abstract Passive scattering systems having Pontryagin state spaces and their minimal conservative dilations are investigated. The transfer functions of passive scattering systems are generalized Schur functions. In the case of a simple conservative system, the right and left Kre,n,Langer factorizations of the transfer function correspond to natural cascade syntheses of systems. A generalization of Sz.,Nagy and Foias criteria for a cascade synthesis of two simple conservative systems to be simple is obtained for systems with Pontryagin state spaces. It is shown that the state space of a simple passive system admits certain unique fundamental decompositions, which give rise to a notion of stability and a characterization of simple conservative systems whose transfer functions have unitary boundary values a.e. on the unit circle. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Design of passive systems for control of inelastic structuresEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 6 2009Gian Paolo Cimellaro Abstract A design strategy for control of buildings experiencing inelastic deformations during seismic response is formulated. The strategy is using weakened, and/or softened, elements in a structural system while adding passive energy dissipation devices (e.g. viscous fluid devices, etc.) in order to control simultaneously accelerations and deformations response during seismic events. A design methodology is developed to determine the locations and the magnitude of weakening and/or softening of structural elements and the added damping while insuring structural stability. A two-stage design procedure is suggested: (i) first using a nonlinear active control algorithm, to determine the new structural parameters while insuring stability, then (ii) determine the properties of equivalent structural parameters of passive system, which can be implemented by removing or weakening some structural elements, or connections, and by addition of energy dissipation systems. Passive dampers and weakened elements are designed using an optimization algorithm to obtain a response as close as possible to an actively controlled system. A case study of a five-story building subjected to El Centro ground motion, as well as to an ensemble of simulated ground motions, is presented to illustrate the procedure. The results show that following the design strategy, a control of both peak inter-story drifts and total accelerations can be obtained. Copyright © 2008 John Wiley & Sons, Ltd. [source] |