Home About us Contact | |||
Passive Avoidance (passive + avoidance)
Terms modified by Passive Avoidance Selected AbstractsThe novel nootropic compound DM232 (UNIFIRAM) ameliorates memory impairment in mice and ratsDRUG DEVELOPMENT RESEARCH, Issue 1 2002Carla Ghelardini Abstract The favorable pharmacological profile exhibited by piracetam stimulated the synthesis of related compounds potentially endowed with a higher nootropic potency. The antiamnesic and procognitive activity of DM232 (unifiram), a new compound structurally related to piracetam, was investigated. Mouse passive avoidance and rat Morris water maze and Social learning tests were employed. DM232 (0.001,1 mg kg,1 i.p. , 0.01,0.1 1 mg kg,1 p.o.) prevented amnesia induced by scopolamine (1.5 mg kg,1 i.p.), mecamylamine (20 mg kg,1 i.p.), baclofen (2 mg kg,1 i.p.), and clonidine (0.125 mg kg,1 i.p.). Furthermore, The antiamnesic effect of the investigated compound was comparable to that exerted by well-known nootropic drugs such as piracetam (30,100 mg kg,1 i.p.), aniracetam (100 mg kg,1 p.o.), rolipram (30 mg kg,1 p.o.), and nicotine (5 mg kg,1 i.p). DM232 (0.1 mg kg,1 i.p.) was also able to prevent amnesia induced by scopolamine (0.8 mg kg,1 i.p.) in the rat Morris watermaze test. In the rat social learning test, DM232 (0.1 mg kg,1 i.p.) injected in adults rats reduced the duration of active exploration of the familiar partner in the second session of the test. DM232, similarly to piracetam, reduced the duration of hypnosis induced by pentobarbital. At the highest effective doses, the investigated compound did not impair motor coordination (rota rod test), nor modified spontaneous (Animex). These results indicate DM232 (unifiram) as a novel cognition enhancer, strictly related to piracetam-like compounds, able to ameliorate memory impairment at doses about 1,000 times lower than the most active available nootropic compounds. Drug Dev. Res. 56:23,32, 2002. © 2002 Wiley-Liss, Inc. [source] Passive avoidance training decreases synapse density in the hippocampus of the domestic chickEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2006A. M. Nikolakopoulou Abstract The bird hippocampus (Hp), although lacking the cellular lamination of the mammalian Hp, possesses comparable roles in spatial orientation and is implicated in passive avoidance learning. As in rodents it can be divided into dorsal and ventral regions based on immunocytochemical, tracing and electrophysiological studies. To study the effects of passive avoidance learning on synapse morphometry in the Hp, spine and shaft synapse densities of 1-day-old domestic chicks were determined in dorsal and ventral Hp of each hemisphere by electron microscopy, 6 and 24 h following training to avoid pecking at a bead coated with a bitter-tasting substance, methyl anthranilate (MeA). The density of asymmetric spine and shaft synapses in MeA-trained birds at 6 h post-training was significantly lower in the dorsal and ventral Hp of the right hemisphere relative to control (untrained) chicks, but by 24 h this difference was absent. A hemispheric asymmetry was apparent in the ventral Hp where the water-trained group showed enhanced shaft and spine synapse density in the left hemisphere, whilst in the MeA-trained group only asymmetric shaft synapses follow the same pattern in relation to the right hemisphere. There were no differences in asymmetric shaft synapses in the dorsal Hp at 6 h post-training, but at 24 h post-training there was a reduction in the density of shaft synapses in the right hemisphere in MeA compared with control birds. These data are discussed in relation to the pruning effects of stress and learning on synapse density in chick Hp. [source] Young adults' achievement and attributional strategies in the transition from school to work: antecedents and consequencesEUROPEAN JOURNAL OF PERSONALITY, Issue 4 2002Sami Määttä This study focused on investigating the extent to which the achievement and attributional strategies individuals deploy influence their success in dealing with the transition from school to work, and whether their success or failure in this particular would have consequences for the kinds of strategy they deployed later in life. Two hundred and fifty young adults filled in the Cartoon-Attribution-Strategy Inventory, a revised version of Beck's Depression Inventory, and a work status questionnaire at the beginning of the last spring term of their curriculum, four months after their graduation, and a year and a half after it. The results showed that the deployment of maladaptive strategies, such as passive avoidance, led to problems in dealing with the transition from school to work. In turn, young adults' problems in dealing with this transition decreased their use of self-serving causal attributions, which was also found to lead to increased depressive symptomatology. Copyright © 2002 John Wiley & Sons, Ltd. [source] Hyperactivity, startle reactivity and cell-proliferation deficits are resistant to chronic lithium treatment in adult Nr2e1frc/frc miceGENES, BRAIN AND BEHAVIOR, Issue 7 2010B. K. Y. Wong The NR2E1 region on Chromosome 6q21-22 has been repeatedly linked to bipolar disorder (BP) and NR2E1 has been associated with BP, and more specifically bipolar I disorder (BPI). In addition, patient sequencing has shown an enrichment of rare candidate-regulatory variants. Interestingly, mice carrying either spontaneous (Nr2e1frc) or targeted (Tlx,) deletions of Nr2e1 (here collectively known as Nr2e1 -null) show similar neurological and behavioral anomalies, including hypoplasia of the cerebrum, reduced neural stem cell proliferation, extreme aggression and deficits in fear conditioning; these are the traits that have been observed in some patients with BP. Thus, NR2E1 is a positional and functional candidate for a role in BP. However, no Nr2e1 -null mice have been fully evaluated for behaviors used to model BP in rodents or pharmacological responses to drugs effective in treating BP symptoms. In this study we examine Nr2e1frc/frc mice, homozygous for the spontaneous deletion, for abnormalities in activity, learning and information processing, and cell proliferation; these are the phenotypes that are either affected in patients with BP or commonly assessed in rodent models of BP. The effect of lithium, a drug used to treat BP, was also evaluated for its ability to attenuate Nr2e1frc/frc behavioral and neural stem cell-proliferation phenotypes. We show for the first time that Nr2e1 -null mice exhibit extreme hyperactivity in the open field as early as postnatal day 18 and in the home cage, deficits in open-field habituation and passive avoidance, and surprisingly, an absence of acoustic startle. We observed a reduction in neural stem/progenitor cell proliferation in Nr2e1frc/frc mice, similar to that seen in other Nr2e1 -null strains. These behavioral and cell-proliferation phenotypes were resistant to chronic-adult-lithium treatment. Thus, Nr2e1frc/frc mice exhibit behavioral traits used to model BP in rodents, but our results do not support Nr2e1frc/frc mice as pharmacological models for BP. [source] Neuronal cell adhesion molecule deletion induces a cognitive and behavioral phenotype reflective of impulsivityGENES, BRAIN AND BEHAVIOR, Issue 4 2008L. D. Matzel Cell adhesion molecules, such as neuronal cell adhesion molecule (Nr-CAM), mediate cell,cell interactions in both the developing and mature nervous system. Neuronal cell adhesion molecule is believed to play a critical role in cell adhesion and migration, axonal growth, guidance, target recognition and synapse formation. Here, wild-type, heterozygous and Nr-CAM null mice were assessed on a battery of five learning tasks (Lashley maze, odor discrimination, passive avoidance, spatial water maze and fear conditioning) previously developed to characterize the general learning abilities of laboratory mice. Additionally, all animals were tested on 10 measures of sensory/motor function, emotionality and stress reactivity. We report that the Nr-CAM deletion had no impact on four of the learning tasks (fear conditioning, spatial water maze, Lashley maze and odor discrimination). However, Nr-CAM null mice exhibited impaired performance on a task that required animals to suppress movement (passive avoidance). Although Nr-CAM mutants expressed normal levels of general activity and body weights, they did exhibit an increased propensity to enter stressful areas of novel environments (the center of an open field and the lighted side of a dark/light box), exhibited higher sensitivity to pain (hot plate) and were more sensitive to the aversive effects of foot shock (shock-induced freezing). This behavioral phenotype suggests that Nr-CAM does not play a central role in the regulation of general cognitive abilities but may have a critical function in regulating impulsivity and possibly an animal's susceptibility to drug abuse and addiction. [source] Differential involvement of the dorsal hippocampus in passive avoidance in C57bl/6J and DBA/2J miceHIPPOCAMPUS, Issue 1 2008Petra J.J. Baarendse Abstract The inferior performance of DBA/2 mice when compared to C57BL/6 mice in hippocampus-dependent behavioral tasks including contextual fear conditioning has been attributed to impaired hippocampal function. However, DBA/2J mice have been reported to perform similarly or even better than C57BL/6J mice in the passive avoidance (PA) task that most likely also depends on hippocampal function. The apparent discrepancy in PA versus fear conditioning performance in these two strains of mice was investigated using an automated PA system. The aim was to determine whether these two mouse strains utilize different strategies involving a different contribution of hippocampal mechanisms to encode PA. C57BL/6J mice exhibited significantly longer retention latencies than DBA/2J mice when tested 24 h after training irrespective of the circadian cycle. Dorsohippocampal NMDA receptor inhibition by local injection of the selective antagonist DL -2-amino-5-phosphonovaleric acid (AP5, 3.2 ,g/mouse) before training resulted in impaired PA retention in C57BL/6J but not in DBA/2J mice. Furthermore, nonreinforced pre-exposure to the PA system before training caused a latent inhibition-like reduction of retention latencies in C57BL/6J, whereas it improved PA retention in DBA/2J mice. These pre-exposure experiments facilitated the discrimination of hippocampal involvement without local pharmacological intervention. The results indicate differences in PA learning between these two strains based on a different NMDA receptor involvement in the dorsal hippocampus in this emotional learning task. We hypothesize that mouse strains can differ in their PA learning performance based on their relative ability to form associations on the basis of unisensory versus multisensory contextual/spatial cues that involve hippocampal processing. © 2007 Wiley-Liss, Inc. [source] Developmental strategy of the endoparasite Xenos vesparum (strepsiptera, Insecta): Host invasion and elusion of its defense reactionsJOURNAL OF MORPHOLOGY, Issue 7 2007Fabio Manfredini Abstract To successfully complete its endoparasitic development, the strepsipteran Xenos vesparum needs to elude the defense mechanisms of its host, the wasp Polistes dominulus. SEM and TEM observations after artificial infections allow us to outline the steps of this intimate host,parasite association. Triungulins, the mobile 1st instar larvae of this parasite, are able to "softly" overcome structural barriers of the larval wasp (cuticle and epidermis) without any traumatic reaction at the entry site, to reach the hemocoel where they settle. The parasite molts 48 h later to a 2nd instar larva, which moves away from the 1st instar exuvium, molts twice more without ecdysis (a feature unique to Strepsiptera) and pupates, if male, or develops into a neotenic female. Host encapsulation involves the abandoned 1st larval exuvium, but not the living parasite. In contrast to the usual process of encapsulation, it occurs only 48 h after host invasion or later, and without any melanization. In further experiments, first, we verified Xenos vesparum's ability to reinfect an already parasitized wasp larva. Second, 2nd instar larvae implanted in a new host did not evoke any response by hemocytes. Third, we tested the efficiency of host defense mechanisms by implanting nylon filaments in control larval wasps, excluding any effect due the dynamic behavior of a living parasite; within a few minutes, we observed the beginning of a typical melanotic encapsulation plus an initial melanization in the wound site. We conclude that the immune response of the wasp is manipulated by the parasite, which is able to delay and redirect encapsulation towards a pseudo-target, the exuvia of triungulins, and to elude hemocyte attack through an active suppression of the immune defense and/or a passive avoidance of encapsulation by peculiar surface chemical properties. J. Morphol., 2007 © 2007 Wiley-Liss, Inc. [source] Apoptotic and behavioral sequelae of mild brain trauma in miceJOURNAL OF NEUROSCIENCE RESEARCH, Issue 4 2007David Tweedie Abstract Mild traumatic brain injury (mTBI) is a not uncommon event in adolescents and young adults. Although it does not result in clear morphological brain defects, it is associated with long-term cognitive, emotional, and behavioral problems. Herein, we characterized the biochemical and behavioral changes associated with experimental mTBI in mice that may act as either targets or surrogate markers for interventional therapy. Specifically, mTBI was induced by 30-g and 50-g weight drop, and at 8 and 72 hr thereafter markers of cellular apoptosis,caspase-3, Bax, apoptosis-inducing factor (AIF), and cytochrome-c (Cyt-c),were quantified by Western blot analysis in hippocampus ipsilateral to the impact. Levels of amyloid-, precursor protein (APP) were also measured, and specific behavioral tests,passive avoidance, open field, and forced swimming (Porsolt) paradigms,were undertaken to assess learning, emotionality, and emotional memory. In the absence of hemorrhage or infarcts, as assessed by triphenyltetrazolium chloride staining, procaspase-3 and Bax levels were markedly altered following mTBI at both times. No cleaved caspase-3 was detected, and levels of AIF and Cyt-c, but not APP, were significantly changed at 72 hr. Mice subjected to mTBI were indistinguishable from controls by neurological examination at 1 and 24 hr, and by passive avoidance/open field at 72 hr, but could be differentiated in the forced swimming paradigm. In general, this model mimics the diffuse effects of mTBI on brain function associated with the human condition and highlights specific apoptotic proteins and a behavioral paradigm as potential markers for prospective interventional strategies. © 2007 Wiley-Liss, Inc. [source] Effects of prenatal exposure to a 50-Hz magnetic field on one-trial passive avoidance learning in 1-day-old chicksBIOELECTROMAGNETICS, Issue 2 2010Huaying Sun Abstract We investigated memory impairment in newly hatched chicks following in ovo exposure to a 50-Hz magnetic field (MF) of 2,mT (60,min/day) on embryonic days 12,18. Isolated and paired chicks were used to test the effect of stress during training, and memory retention was tested at 10, 30, and 120,min, following exposure to a bitter-tasting bead (100% methylanthranilate). Results showed that memory was intact at 10,min in both isolated and paired chicks with or without MF exposure. However, while isolated chicks had good memory retention levels at 30 and 120,min, those exposed to MF did not. The results suggest a potential disruption of memory formation following in ovo exposure to MF, with this effect only evident in the more stressed, isolated chicks. Bioelectromagnetics 31:150,155, 2010. © 2009 Wiley-Liss, Inc. [source] |