Partitioning Approach (partitioning + approach)

Distribution by Scientific Domains


Selected Abstracts


Ploidy manipulation in guinea grass (Panicum maximum Jacq., Poaceae) utilizing a Hybridization-supplemented Apomixis-components Partitioning Approach (HAPA)

PLANT BREEDING, Issue 3 2009
P. Kaushal
Abstract Ploidy manipulations are achieved by utilizing unreduced gametes, somatic chromosome doubling or haploidization. Apomixis, the asexual mode of reproduction through seeds, involves two of these phenomena viz., apomeiosis (unreduced embryo-sac formation) and parthenogenesis (fertilization-independent embryogenesis). The two components when partitioned may yield high frequencies of triploids and haploids, and thus, serve as a tool to manipulate ploidy levels when appropriately supplemented with hybridization schemes. Utilizing this Hybridization-supplemented Apomixis-components Partitioning Approach (HAPA), the largest ploidy series in a crop plant was generated in guinea grass (Panicum maximum Jacq.). Eighty-nine diverse guinea grass accessions were characterized for their reproductive capacities to identify tetraploid (2n = 4x = 32) accession(s) with high apospory but reduced parthenogenetic capacity, thereby producing a high frequency of hexaploid seeds. Seeds from accession IG 04-164 were utilized to produce a ploidy series by appropriately combining partitioned apomixis components and hybridizations in two seasonal cycles. We successfully obtained plants representing ploidies 3x, 4x, 5x, 6x, 8x and 9x, all derived from a single 4x progenitor. Production methodology, reproducibility and utilization of HAPA in cytogenetic and molecular studies are discussed. [source]


Influence of sediment ingestion and exposure concentration on the bioavailable fraction of sediment-associated tetrachlorobiphenyl in oligochaetes,

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 4 2008
Arto J. Sormunen
Abstract The desorption and bioavailability of 3,3,,4,4,-tetrachlorobiphenyl (PCB 77) were studied in spiked natural sediments at six concentrations. The desorption kinetics were measured in a sediment,water suspension using Tenax® resin extraction, and the bioavailability was measured by exposing Lumbriculus variegatus (Oligochaeta) to PCB 77,spiked sediment in a 14-d kinetic study. In addition, freely dissolved pore-water concentrations were measured using the polyoxymethylene solid-phase extraction method. The present study examined whether bioavailability can be defined more accurately by measuring the size of desorbing fractions and the pore-water concentrations than by using the standard equilibrium partitioning approach. The importance of ingested sediment in bioaccumulation also was investigated. Our data showed a clear, decreasing trend in the rapid-desorbing fractions and in the standard biota,sediment accumulation factors (BSAF) with increasing concentration in sediment. Desorbing fractions,refined BSAFs were more uniform across the concentration treatments, and the pore-water PCB 77 concentration predicted tissue concentrations close to observed values. In the risk assessment process, pore-water concentration or desorbing fractions would lead to more precise bioavailability estimates compared with those from the traditional equilibrium partitioning approach. The result also showed, however, that sediment-ingesting worms had access to an additional bioavailable chemical fraction that was especially evident when PCB 77 pore-water concentrations most likely approached the solubility limit. Thus, feeding may modify the bioavailable fraction that cannot be explained by simple equilibrium partitioning models. [source]


Two-stage detection of partitioned random CDMA

EUROPEAN TRANSACTIONS ON TELECOMMUNICATIONS, Issue 5 2008
Lukasz Krzymien
Random Code Division Multiple Access (CDMA) with low complexity two-stage joint detection/decoding is considered. A sequence partitioning approach is used for modulation, where every spreading sequence is divided into M sections (partitions) which are interleaved prior to transmission. This setup, called partitioned CDMA, can be understood as a generalisation of (chip) interleave division multiple access (IDMA). An analysis of a low-complexity iterative cancellation receiver is presented for arbitrary received power distributions. It is shown that for equal rate and equal power users the asymptotic performance of partitioned CDMA is equal to the performance of CDMA with optimal a posteriori probability (APP) detection for system loads K/N,<,1.49. Effects of asynchronous signal transmission are quantified for standard pulse shaping filters and it is shown that the signal-to-noise ratios achievable in an asynchronous system are improved with respect to fully synchronous transmission. The effect of unequal received powers is examined and considerable gains in performance are obtained by judicious choices of power distributions. For certain power distribution, partitioned CDMA with iterative detection can achieve arbitrary system loads, that is detection is no longer fundamentally interference limited. The practical near-far resistance of the proposed system is illustrated using an example of a receiver with a circular receive footprint and uniformly distributed transmitters (single cell system). Copyright © 2008 John Wiley & Sons, Ltd. [source]


Approaches for derivation of environmental quality criteria for substances applied in risk assessment of discharges from offshore drilling operations

INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT, Issue 2 2008
Dag Altin
Abstract In order to achieve the offshore petroleum industries "zero harm" goal to the environment, the environmental impact factor for drilling discharges was developed as a tool to identify and quantify the environmental risks associated with disposal of drilling discharges to the marine environment. As an initial step in this work the main categories of substances associated with drilling discharges and assumed to contribute to toxic or nontoxic stress were identified and evaluated for inclusion in the risk assessment. The selection were based on the known toxicological properties of the substances, or the total amount discharged together with their potential for accumulation in the water column or sediments to levels that could be expected to cause toxic or nontoxic stress to the biota. Based on these criteria 3 categories of chemicals were identified for risk assessment the water column and sediments: Natural organic substances, metals, and drilling fluid chemicals. Several approaches for deriving the environmentally safe threshold concentrations as predicted no effect concentrations were evaluated in the process. For the water column consensus were reached for using the species sensitivity distribution approach for metals and the assessment factor approach for natural organic substances and added drilling chemicals. For the sediments the equilibrium partitioning approach was selected for all three categories of chemicals. The theoretically derived sediment quality criteria were compared to field-derived threshold effect values based on statistical approaches applied on sediment monitoring data from the Norwegian Continental Shelf. The basis for derivation of predicted no effect concentration values for drilling discharges should be consistent with the principles of environmental risk assessment as described in the Technical Guidance Document on Risk Assessment issued by the European Union. [source]


A class of parallel multiple-front algorithms on subdomains

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 11 2003
A. Bose
Abstract A class of parallel multiple-front solution algorithms is developed for solving linear systems arising from discretization of boundary value problems and evolution problems. The basic substructuring approach and frontal algorithm on each subdomain are first modified to ensure stable factorization in situations where ill-conditioning may occur due to differing material properties or the use of high degree finite elements (p methods). Next, the method is implemented on distributed-memory multiprocessor systems with the final reduced (small) Schur complement problem solved on a single processor. A novel algorithm that implements a recursive partitioning approach on the subdomain interfaces is then developed. Both algorithms are implemented and compared in a least-squares finite-element scheme for viscous incompressible flow computation using h - and p -finite element schemes. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Robust ship scheduling with multiple time windows

NAVAL RESEARCH LOGISTICS: AN INTERNATIONAL JOURNAL, Issue 6 2002
Marielle Christiansen
We present a ship scheduling problem concerned with the pickup and delivery of bulk cargoes within given time windows. As the ports are closed for service at night and during weekends, the wide time windows can be regarded as multiple time windows. Another issue is that the loading/discharging times of cargoes may take several days. This means that a ship will stay idle much of the time in port, and the total time at port will depend on the ship's arrival time. Ship scheduling is associated with uncertainty due to bad weather at sea and unpredictable service times in ports. Our objective is to make robust schedules that are less likely to result in ships staying idle in ports during the weekend, and impose penalty costs for arrivals at risky times (i.e., close to weekends). A set partitioning approach is proposed to solve the problem. The columns correspond to feasible ship schedules that are found a priori. They are generated taking the uncertainty and multiple time windows into account. The computational results show that we can increase the robustness of the schedules at the sacrifice of increased transportation costs. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 611,625, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10033 [source]


Minimizing SONET Add-Drop Multiplexers in optical UPSR networks using the minimum number of wavelengths

NETWORKS: AN INTERNATIONAL JOURNAL, Issue 3 2009
Yong Wang
Abstract In SONET/WDM optical networks, a high-speed wavelength channel is usually shared by multiplexed low-rate network traffic demands. The multiplexing is known as traffic grooming and carried out by SONET Add-Drop Multiplexers (SADM). The maximum number of low-rate traffic demands that can be multiplexed into one wavelength is called the grooming factor. Because SADMs are expensive network devices, a key optimization problem in optical network design is to groom a given set of low-rate traffic demands such that the number of required SADMs is minimized. This optimization problem is challenging and NP-hard even for Unidirectional Path-Switched Ring networks with unitary duplex traffic demands. In this article, we propose two linear-time approximation algorithms for this NP-hard problem based on a novel graph partitioning approach. Both algorithms achieve better worst case performance than the previous algorithms. We also show that the upper bounds obtained by our algorithms are very close to the lower bounds for some instances. In addition, both of our algorithms use the minimum number of wavelengths, which are precious resources as well in optical networks. © 2008 Wiley Periodicals, Inc. NETWORKS, 2009 [source]


Evaluating explicit and implicit routing for watershed hydro-ecological models of forest hydrology at the small catchment scale

HYDROLOGICAL PROCESSES, Issue 8 2001
C. L. Tague
Abstract This paper explores the behaviour and sensitivity of a watershed model used for simulating lateral soil water redistribution and runoff production. In applications such as modelling the effects of land-use change in small headwater catchments, interactions between soil moisture, runoff and ecological processes are important. Because climate, soil and canopy characteristics are spatially variable, both the pattern of soil moisture and the associated outflow must be represented in modelling these processes. This study compares implicit and explicit routing approaches to modelling the evolution of soil moisture pattern and spatially variable runoff production. It also addresses the implications of using different landscape partitioning strategies. This study presents the results of calibration and application of these different routing and landscape partitioning approaches on a 60 ha forested watershed in Western Oregon. For comparison, the different approaches are incorporated into a physically based hydro-ecological model, RHESSys, and the resulting simulated soil moisture, runoff production and sensitivity to unbiased error are examined. Results illustrate that both routing approaches can be calibrated to achieve a reasonable fit between observed and modelled outflow. Calibrated values for effective watershed hydraulic conductivity are higher for the explicit routing approach, which illustrates differences between the two routing approaches in their representation of internal watershed dynamics. The explicit approach illustrates a seasonal shift in drainage organization from watershed to more local control as climate goes from a winter wet to a summer dry period. Assumptions used in the implicit approach maintain the same pattern of drainage organization throughout the season. The implicit approach is also more sensitive to random error in soil and topographic input information, particularly during wetter periods. Comparison between the two routing approaches illustrates the advantage of the explicit routing approach, although the loss of computational efficiency associated with the explicit routing approach is noted. To compare different strategies for partitioning the landscape, the use of a non-grid-based method of partitioning is introduced and shown to be comparable to grid-based partitioning in terms of simulated soil moisture and runoff production. Copyright © 2001 John Wiley & Sons, Ltd. [source]