Home About us Contact | |||
Particular Season (particular + season)
Selected AbstractsDownslope Displacement Rates of Ploughing Boulders in A Mid-Alpine Environment: Finse, Southern Norway.GEOGRAFISKA ANNALER SERIES A: PHYSICAL GEOGRAPHY, Issue 3 2001Ivar Berthling Annual and seasonal displacements of ploughing boulders were investigated at Finse, southern Norway, by traditional surveying and differential carrier-phase global positioning system measurements. Annual displacement rates were mainly below 10 mm/year, although one particular season showed rates of 26 mm/year on average. There was a tendency for larger boulders to travel faster. Seasonal displacements were restricted to the annual freeze-thaw cycle. The frost heave seems to have a significant horizontal component, which does not necessarily point in the downslope direction. Thus, the concept of frost creep is not applicable to the investigated ploughing boulders. On the other hand, due to tilting of the boulders, a momentum may be gained during thaw consolidation that could induce downslope displacements. Such a process will work together with gelifluction. [source] Characterization of Gonadotrophin-Releasing Hormone Precursor cDNA in the Old World Mole-Rat Cryptomys Hottentotus Pretoriae: High Degree of Identity with the New World Guinea Pig SequenceJOURNAL OF NEUROENDOCRINOLOGY, Issue 5 2005T. Kalamatianos Abstract Regulation of pituitary gonadotrophins by the decapeptide gonadotrophin-releasing hormone 1 (GnRH1) is crucial for the development and maintenance of reproductive functions. A common amino acid sequence for this decapeptide, designated as ,mammalian' GnRH, has been identified in all mammals thus far investigated with the exception of the guinea pig, in which there are two amino acid substitutions. Among hystricognath rodents, the members of the family Bathyergidae regulate reproduction in response to diverse cues. Thus, highveld mole-rats (Cryptomys hottentotus pretoriae) are social bathyergids in which breeding is restricted to a particular season in the dominant female, but continuously suppressed in subordinate colony members. Elucidation of reproductive control in these animals will be facilitated by characterization of their GnRH1 gene. A partial sequence of GnRH1 precursor cDNA was isolated and characterized. Comparative analysis revealed the highest degree of identity (86%) to guinea pig GnRH1 precursor mRNA. Nevertheless, the deduced amino acid sequence of the mole-rat decapeptide is identical to the ,mammalian' sequence rather than that of guinea pigs. Successful detection of GnRH1-synthesizing neurones using either a guinea pig GnRH1 riboprobe or an antibody against the ,mammalian' decapeptide is consistent with the guinea pig-like sequence for the precursor and the classic ,mammalian' form for the decapeptide. The high degree of identity in the GnRH1 precursor sequence between this Old World mole-rat and the New World guinea pig is consistent with the theory that caviomorphs and phiomorphs originated from a common ancestral line in the Palaeocene to mid Eocene, some 63,45 million years ago. [source] Organic-walled dinoflagellate cyst production in relation to upwelling intensity and lithogenic influx in the Cape Blanc region (off north-west Africa)PHYCOLOGICAL RESEARCH, Issue 2 2005Ewa Susek SUMMARY Fossil dinoflagellate cyst assemblages are increasingly used in paleoclimatic research to establish paleoenvi-ronmental reconstructions. To obtain reliable reconstructions, it is essential to know which physical factors influence the cyst production. Most information about the relationship between variations in physical parameters and cyst production is known from middle and higher latitudes. Information from the (sub)tropics is rare. To increase this information, the temporal variation in cyst assemblages from the upwelling area off north-west Africa (off Mauritania) has been compared to environmental conditions of the upper water column. Samples were collected by the sediment trap CB9, off north-west Africa (Cape Blanc, 21°15,2,N, 20°42,2,W) between 11 June 1998 and 7 November 1999 at 27.5-day intervals. Off Cape Blanc, upwelling occurs throughout the year with variable intensity. This region is also characterized by frequently occurring Saharan dust storms. Seasonal variations in dust input, upwelling intensity and sea surface temperature are reflected by the production of organic-walled dinoflagellate cyst assemblages. Several cyst taxa are produced throughout the sampling interval, with the highest fluxes at times of strongest upwelling relaxation and/or dust input (Echinidinium aculeatum Zonneveld, Echini-din ium delicatum Zonneveld, Echinidinium granulaturn Zonneveld, Echinidinium spp., Impagidinium aculeatum (Wall) Lentin et Williams, Impagidinium sphaeri-cum (Wall) Lentin et Williams, Protoperidinium americanum (Gran et Braarud) Balech, Protoperidinium stellatum (Wall in Wall et Dale) Rochon etal., Protoperidinium spp., Selenopemphix nephroides (Benedek) Benedek et Sarjeant and Selenopemphix quanta (Bradford) Matsuoka). Species such as, for example, Bitectatodinium spongium (Zonneveld) Zonneveld et Jurkschat and Impagidinium patulum (Wall) Stover et Evitt do not show any production pattern related to a particular season of the year or to specific environmental conditions in the upper water column. The production of cysts of Protoperidinium monospinum (Paulsen) Zonneveld et Dale is restricted to intervals with increased nutrient concentrations in upper waters when sea surface temperatures at the sampling site is below approximately 24°C. [source] AUTOMATICALLY OPERATING RADARS FOR MONITORING INSECT PEST MIGRATIONSINSECT SCIENCE, Issue 4 2002Alistair Drake Abstract, Over the last three decades, special-purpose "entomological" radars have contributed much to the development of our understanding of insect migration, especially of the nocturnal migrations at altitudes of up to , 1 km that are regularly undertaken by many important pest species. One of the limitations of early radar studies, the difficulty of maintaining observations over long periods, has recently been overcome by the development of automated units that operate autonomously and transmit summaries of their observations to a base laboratory over the public telephone network. These relatively low-cost Insect Monitoring Radars (IMRs) employ a novel "ZLC" configuration that allows high quality data on the migrants' flight parameters and identity to be acquired. Two IMRs are currently operating in the semi-arid inland of eastern Australia, in a region where populations of migrant moths (Lepidoptera) and Australian plague locusts Chortoicetes terminifera (Orthoptera) commonly originate, and some examples of outputs from one of these units are presented. IMRs are able to provide the data needed to characterize a migration system, i.e. to estimate the probabilities of migration events occurring in particular directions at particular seasons and in response to particular environmental conditions and cues. They also appear capable of fulfilling a "sentinel" role for pest-management organisations, alerting forecasters to major migration events and thus to the likely new locations of potential target populations. Finally, they may be suitable for a more general ecological monitoring role, perhaps especially for quantifying year-to-year variations in biological productivity. [source] Post-dispersal fate of seeds in the Monte desert of Argentina: patterns of germination in successive wet and dry yearsJOURNAL OF ECOLOGY, Issue 6 2000Luis Marone Summary 1,Patterns of seed germination of grass and forb species were studied in open Prosopis woodland of the central Monte desert (Argentina) during several years, to test the hypotheses that (i) seed germination is positively affected by both rainfall and protection afforded by vegetation cover (a facilitative effect), (ii) the number of surviving plants is positively influenced by rainfall but negatively affected by established vegetation (a competitive effect), and (iii) seed loss from soil banks owing to germination is lower than that caused by granivorous animals. 2,Forb species germinated during restricted periods, either in early autumn or in spring. Grasses, however, germinated throughout the growing season, but because seedlings could not be identified to species level, it was impossible to discern whether different species germinated in particular seasons, or if all grasses germinated in all seasons. Grass and forb germination were generally of similar magnitude, but grass germination increased by an order of magnitude during a summer of unusually abundant rainfall related to an El Niņo Southern Oscillation (ENSO) event. 3,Overall, the spatial distribution of neither germinating seeds nor surviving plants could be explained by interactions with established vegetation (facilitation and competition effects, respectively). An alternative explanation may be provided by the distribution of forb and grass seeds in the soil. 4,Seed loss owing to germination was low in both dry and rainy years. For forbs, such loss totalled <,1% of soil-seed reserves, and no forb species suffered losses >,4%. Total grass-seed loss to germination was usually <,0.5%, and the 5% reached in 1997,98 corresponded to an interruption of a prolonged drought by unusually abundant rainfall associated with a reduced seed bank. 5,Grass-seed loss caused by germination was one to two orders of magnitude lower than that reported due to autumn-winter granivory in the central Monte desert. [source] |