Home About us Contact | |||
Particular Habitats (particular + habitat)
Selected AbstractsNutrients, diversity, and community structure of two phytotelm systems in a lower montane forest, Puerto RicoECOLOGICAL ENTOMOLOGY, Issue 3 2000Barbara A. Richardson Summary 1. Bromeliad and heliconia phytotelmata in the same forest area were compared in terms of their animal assemblages, nutrient inputs, and plant architecture. 2. For all major elements, nutrient inputs from canopy-derived debris and rainfall in bromeliads were significantly lower than those derived from decaying flower parts and plant secretions in heliconia bracts. Bromeliads contained significantly fewer organisms per unit volume of water and unit dry weight of organic matter than did heliconia inflorescences. They also contained a significantly lower animal biomass (199 mg DW from 15 bromeliads, 527 mg DW from 15 heliconia inflorescences). 3. Species richness was independent of abundance, demonstrating that, at least for small container habitats, higher abundance does not necessarily lead to a greater species richness. Communities were remarkably similar in patterns of relative abundance and species richness (23 spp. in bromeliads, 21 spp. in heliconia), probably due to functional similarities in plant architecture, with the two most abundant species comprising 60,62% of the total community. Coefficients of similarity were low because of marked differences in species assemblages. 4. Some taxa were phytotelm generalists but most showed a preference for one particular habitat, indicating differential selection in the choice of oviposition sites and larval development within the forest ecosystem. In common with many island communities, species richness was lower than that reported for these phytotelm habitats in mainland central and south America. [source] Habitat associations of Sterculiaceae trees in a Bornean rain forest plotJOURNAL OF VEGETATION SCIENCE, Issue 5 2006Toshihiro Yamada Ashton (1980) Abstract. Questions: 1. Are trees in a Bornean tropical rain forest associated with a particular habitat? 2. Does the strength of habitat association with the species-specific optimal habitat increase with tree size? Location: A 52-ha plot in a mixed dipterocarp forest in a heterogeneous landscape at the Lambir Hills National Park, Sarawak, East Malaysia. Methods: Ten species from the Sterculiaceae were chosen as representative of all species in the plot, on the assumption that competition among closely related species is more stringent than that among more distantly related taxa. Their habitat associations were tested using data from a 52-ha plot by a torus-translation test. Results: The torus-translation test showed that eight out of the ten species examined had significant association with at least one habitat. We could not find negative species-habitat associations for rare species, probably due to their small sample sizes. Among four species small trees were less strongly associated with habitat than large trees, implying competitive exclusion of trees in suboptimal habitats. The other four species showed the opposite pattern, possibly owing to the smaller sample size of large trees. A habitat had a maximum of three species with which it was significantly positively associated. Conclusions: For a species to survive in population equilibrium in a landscape, habitats in which ,source' subpopulations can be sustained without subsidy from adjacent habitats are essential. Competition is most severe among related species whose source subpopulations share the same habitat. On the evidence of source subpopulations identified by positive species-habitat association, species-habitat association reduces the number of confamilial competitors. Our results therefore indicate that edaphic niche specialization contributes to coexistence of species of Sterculiaceae in the plot, consistent with the expectations of equilibrium hypotheses. [source] Plant invasions , the role of mutualismsBIOLOGICAL REVIEWS, Issue 1 2000DAVID M. RICHARDSON ABSTRACT Many introduced plant species rely on mutualisms in their new habitats to overcome barriers to establishment and to become naturalized and, in some cases, invasive. Mutualisms involving animalmediated pollination and seed dispersal, and symbioses between plant roots and microbiota often facilitate invasions. The spread of many alien plants, particularly woody ones, depends on pollinator mutualisms. Most alien plants are well served by generalist pollinators (insects and birds), and pollinator limitation does not appear to be a major barrier for the spread of introduced plants (special conditions relating to Ficus and orchids are described). Seeds of many of the most notorious plant invaders are dispersed by animals, mainly birds and mammals. Our review supports the view that tightly coevolved, plant-vertebrate seed dispersal systems are extremely rare. Vertebrate-dispersed plants are generally not limited reproductively by the lack of dispersers. Most mycorrhizal plants form associations with arbuscular mycorrhizal fungi which, because of their low specificity, do not seem to play a major role in facilitating or hindering plant invasions (except possibly on remote islands such as the Galapagos which are poor in arbuscular mycorrhizal fungi). The lack of symbionts has, however, been a major barrier for many ectomycorrhizal plants, notably for Pinus spp. in parts of the southern hemisphere. The roles of nitrogen-fixing associations between legumes and rhizobia and between actinorhizal plants and Frankia spp. in promoting or hindering invasions have been virtually ignored in the invasions literature. Symbionts required to induce nitrogen fixation in many plants are extremely widespread, but intentional introductions of symbionts have altered the invasibility of many, if not most, systems. Some of the world's worst invasive alien species only invaded after the introduction of symbionts. Mutualisms in the new environment sometimes re-unite the same species that form partnerships in the native range of the plant. Very often, however, different species are involved, emphasizing the diffuse nature of many (most) mutualisms. Mutualisms in new habitats usually duplicate functions or strategies that exist in the natural range of the plant. Occasionally, mutualisms forge totally novel combinations, with profound implications for the behaviour of the introduced plant in the new environment (examples are seed dispersal mutualisms involving wind-dispersed pines and cockatoos in Australia; and mycorrhizal associations involving plant roots and fungi). Many ecosystems are becoming more susceptible to invasion by introduced plants because: (a) they contain an increasing array of potential mutualistic partners (e.g. generalist frugivores and pollinators, mycorrhizal fungi with wide host ranges, rhizobia strains with infectivity across genera); and (b) conditions conducive for the establishment of various alienalien synergisms are becoming more abundant. Incorporating perspectives on mutualisms in screening protocols will improve (but not perfect) our ability to predict whether a given plant species could invade a particular habitat. [source] Incorporation of Recreational Fishing Effort into Design of Marine Protected AreasCONSERVATION BIOLOGY, Issue 5 2006TIM P. LYNCH consulta pública; modelos de reservas marinas; pesca con caña; suposiciones de poza dinámica Abstract:,Theoretical models of marine protected areas (MPAs) that explore benefits to fisheries or biodiversity conservation often assume a dynamic pool of fishing effort. For instance, effort is homogenously distributed over areas from which subsets of reserves are chosen. I tested this and other model assumptions with a case study of the multiple-use Jervis Bay Marine Park. Prior to zoning of the park I conducted 166 surveys of the park's recreational fisheries, plotting the location of 16,009 anglers. I converted these plots into diagrams of fishing effort and analyzed correlates between fishing and habitat and the effect of two reserve designs,the draft and final zoning plans of the park,on the 15 fisheries observed. Fisheries were strongly correlated with particular habitats and had negatively skewed and often bimodal spatial distribution. The second mode of intensely fished habitat could be 6 SD greater than the fishery's mean allocation of effort by area. In the draft-zoning plan, sanctuary zone (no-take) area and potential subduction of fishing effort were similar. In the final plan, which was altered in response to public comment, the area of sanctuary zone increased, and the impact on fishing effort decreased. In only one case was a fishery's most intensely targeted location closed to fishing. Because of the discriminating manner with which fishers target habitats, if simple percentage targets are used for planning, sanctuary location can be adjusted to avoid existing fishing effort. According to modeled outcomes, the implication of this may be diminished reserve effectiveness. To address this, reserve area should be implicitly linked to subducted fishing effort when promoting or modeling MPAs. Resumen:,Los modelos teóricos de áreas marinas protegidas (AMPs) que exploran los beneficios para las pesquerías o la conservación de la biodiversidad a menudo asumen que hay una poza dinámica en el esfuerzo de pesca. Por ejemplo, el esfuerzo es distribuido homogéneamente en áreas en las que se seleccionan subconjuntos de reservas. Probé esta y otras suposiciones del modelo con un estudio de caso del Parque Marino Jarvis Bay. Antes de la zonificación del parque, realicé 166 muestreos de las pesquerías recreativas del parque, dibujando la localización de 16,009 pescadores con caña. Convertí estos dibujos en diagramas de esfuerzo de pesca y analicé las correlaciones entre la pesca, el hábitat y el efecto de dos diseños de reserva,el anteproyecto y los planes finales de zonificación del parque,sobre las 15 pesquerías observadas. Las pesquerías se correlacionaron fuertemente con los hábitats particulares y tenían una distribución espacial sesgada negativamente y a menudo bimodal. El segundo tipo de hábitat pescado intensivamente podría ser 6 DS mayor que la asignación promedio de esfuerzo de pesquería por unidad de área. En el anteproyecto de plan de zonificación, el área santuario (sin pesca) y la subducción potencial del esfuerzo de pesca eran similares. En el plan final, que fue alterado en respuesta a comentarios del público, el área del santuario fue incrementada, y el impacto del esfuerzo de pesca disminuyó. En solo un caso fue cerrado a la pesca la localidad de pesca más intensiva. Debido a la forma discriminada en que los pescadores eligen los hábitats, si se utilizan objetivos porcentuales simples para la planificación, la localización del santuario puede ser ajustada para evitar el esfuerzo de pesca existente. De acuerdo con los resultados del modelo, la implicación puede ser la disminución de la efectividad de la reserva. Para abordar esto, el área de la reserva debiera estar implícitamente relacionada con la reducción del esfuerzo de pesca cuando se promueven o modelan AMPs. [source] Environmental and spatial effects on the distribution of blue marlin (Makaira nigricans) as inferred from data for longline fisheries in the Pacific OceanFISHERIES OCEANOGRAPHY, Issue 6 2008NAN-JAY SU Abstract Blue marlin is distributed throughout tropical and temperate waters in the Pacific Ocean. However, the preference of this species for particular habitats may impact its vulnerability to being caught. The relationship between spatio-temporal patterns of blue marlin abundance and environmental factors is examined using generalized additive models fitted to catch and effort data from longline fisheries. The presence of blue marlin, and the catch rate given presence, are modeled separately. Latitude, longitude, and sea-surface temperature explain the greatest proportion of the deviance. Spatial distributions of relative density of blue marlin, based on combining the probability of presence and relative density given presence, indicate that there is seasonal variation in the distribution of blue marlin, and that the highest densities occur in the tropics. Seasonal patterns in the relative density of blue marlin appear to be related to shifts in SST. The distribution and relative abundance of blue marlin are sufficiently heterogeneous in space and time that the results of analyses of catch and effort data to identify ,hotspots' could be used as the basis for time-area management to reduce the amount of blue marlin bycaught in longline fisheries. [source] History of marine biodiversityGEOLOGICAL JOURNAL, Issue 3-4 2001Peter M. Sheehan Abstract During the Phanerozoic, three steps of increasing diversity each had a unique Evolutionary Fauna (EF). During each EF, there were geologically long intervals of community stasis referred to as Ecological Evolutionary Units (EEUs). These intervals were characterized by communities composed of incumbent faunas that dominated particular habitats. Niches that were already occupied by incumbents were seldom invaded by new taxa, and the resilience of the incumbents to new competitors resulted in the long interval stasis. Most EEUs were terminated by extinction events that were caused by severe disruptions of the physical environment such as glaciations and extraterrestrial impacts. During mass extinctions many niches were vacated when incumbents were eliminated. Mass extinctions were followed by recovery intervals lasting on the order of 5 million years during which many surviving clades evolved adaptations which allowed them to move into vacated niches. New incumbents were established during these recovery intervals, and the next EEU began. In many ways, the recovery intervals resemble times when organisms invaded previously unoccupied ecospace, such as the emergence of life on land or the progressive filling of previously unoccupied habitats such as deep-burrowing and high epifaunal tiers that were colonized during the Palaeozoic. The recognition of long intervals of ecological stasis and the importance of physical disruptions in clearing incumbents is forcing revision of the traditional evolutionary viewpoint. The idea that most evolutionary change was accomplished very gradually by competition between organisms and by becoming better adapted to a relatively stable environment is being replaced by a recognition that major morphological and synecological changes tend to occur very rapidly and at times when there are few established competitors. Copyright © 2001 John Wiley & Sons, Ltd. [source] The evolutionary species pool hypothesis and patterns of freshwater diatom diversity along a pH gradientJOURNAL OF BIOGEOGRAPHY, Issue 3 2005Jason Pither Abstract Aim, To interpret the unimodal relationship between diatom species richness and lake pH within the context of the evolutionary species pool hypothesis (SPH). We test the following primary prediction arising from the SPH: the size of the potential species pool (PSP) will increase along a gradient representing the historical commonness of different pH environments (pH commonness). To do this we assume that the present-day spatial dominance of near-neutral pH conditions compared with acidic and alkaline conditions reliably mimics the relative spatial availabilities of historical pH conditions among freshwater lakes. We also determine whether local richness represents a constant proportion of PSP size along the pH commonness gradient. Location, Two hundred and thirty-four lakes distributed over a 405,000 km2 region of the north-eastern United States of America. Methods, Sediment diatom morphospecies lists and pH data were acquired from the US Environmental Protection Agency's Environmental Monitoring and Assessment Program (EMAP) website. Using 248 morphospecies that occurred in at least 10 of the 234 lakes, four different measures of PSPs were calculated along the pH gradient. Local species richness was equated with the number of species occurring within the lake. Alpha diversity was equated with the average species richness of lakes with similar pH values. A combination of statistical methods were employed, including correlations, quadratic regression and piecewise regression. Results, PSP size increased significantly with pH commonness for all four measures of PSP size, thus supporting the primary prediction of the evolutionary SPH. Local richness comprised a larger proportion of the PSP within acidic lakes than within circumneutral lakes. Alpha diversity and lake species richness both increased significantly with pH commonness, but the former did so in a two-step fashion. We test and reject several alternative contemporary time-scale explanations for our findings. Main Conclusions, Our findings are consistent with the hypothesis that diatom taxonomic richness is presently lower within acidic and highly alkaline lakes than in circumneutral lakes owing to the limited opportunity in space and/or time for the evolution of suitably adapted species. Whereas ecological processes can explain why certain species are excluded from particular habitats, e.g. acidic lakes, they cannot account for why so few species are adapted to those habitats in the first place. [source] Vegetation succession in basalt quarries: Pattern on a landscape scaleAPPLIED VEGETATION SCIENCE, Issue 2 2003Jan Novák Abstract. A spatio-temporal variation of vegetation during spontaneous succession was studied in 56 basalt quarries spread over 1800 km2 in the ,eské st,edoho,í Hills (NW Czech Republic, Central Europe). Differences in the particular habitats inside a quarry, i.e. steep rocky slopes, bottoms and levels; dumps; and screes were considered. The habitats ranged in age from 1 to 78 yr since abandonment. Macroclimate (mean annual temperature and precipitation) significantly influenced the course of succession, which led to a formation of shrubby grassland, shrubby woodland or tall woodland. Participation of target species typical of steppe-like communities significantly depended on the occurrence of the communities in the vicinity, up to a distance of 30 m from a quarry. Disused quarries may become refugia for rare plant species. Spontaneous successional processes led in the reasonable time of ca. 20 yr to semi-natural vegetation. Thus, they can be successfully exploited in restoration programs scheduled for the disused quarries. [source] |