Particle Tracking (particle + tracking)

Distribution by Scientific Domains

Kinds of Particle Tracking

  • emission particle tracking
  • positron emission particle tracking


  • Selected Abstracts


    Gas-solid Two-phase Mixtures Flowing Upward through a Confined Packed Bed,

    PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, Issue 3-4 2006
    Yurong He
    Abstract This paper deals with flows of a gas-solid two-phase mixture through a confined packed bed. Both experimental work and numerical modelling are performed on the behaviour of suspended particles within the packed bed. The experimental work is carried out with a non-intrusive Positron Emission Particle Tracking (PEPT) technique, which tracks particle motion at the single particle level for a prolonged period thus allows both the microscopic and macroscopic solids behaviour to be analysed under the steady-state conditions. A continuous based model is used to simulate the flow behaviour. The model uses a newly proposed porosity model and treats the suspended and packed particles as a binary mixture with the packed particles being at zero velocity. The results show that the model captures the main features of solids behaviour in terms of the radial distributions of the suspended particle concentration and the axial solids velocity. Both the experiments and modelling suggest that the wall effect on the motion of suspended particles be limited to a small region close to the wall (,0.5,1 packed particle diameter). However, deviations exist between the model predictions and experiments; more work is therefore proposed to improve the interaction terms in the model between the suspended and packed particles. [source]


    Analysis of Particle Size Distribution by Particle Tracking

    PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, Issue 5 2004
    Christiane Finder
    Abstract Particle tracking is performed using a combination of dark field or fluorescence video microscopy with automatic image analysis. The optical detection together with the image analysis software allows for the time resolved localization of individual particles with diameters between 100 and 1000,nm. Observation of their Brownian motion over a set of time intervals leads to the determination of their mean square displacements under the given room temperature and viscosity. Hereby, the radii of a set of particles visible within a given optical frame are derived simultaneously. Rapid data analysis leads to reliable particle size histograms. The applicability of this method is demonstrated on polystyrene latices and PMMA nanospheres with radii between 51,nm and 202,nm. [source]


    Decreasing the Sampling Time Interval in Radioactive Particle Tracking

    THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 1 2003
    Navid Mostoufi
    Abstract The study of the movement of solids in multiphase reactors using radioactive particle tracking is currently limited to fairly modest particle velocities because of count-rate limitations of the detection system. In this work, this restriction was overcome by increasing the activity of the radioactive tracer, by decreasing the sampling time interval and by modifying the particle tracking software to recognize which detectors were saturated and to use only the data from the remaining unsaturated detectors. Higher tracer activity resulted in lower standard deviation of the calculated tracer coordinates. L'étude du mouvement des solides par traçage avec des particules radioactives dans un réacteur polyphasique est actuellement limitée à des vitesses de particules relativement modestes à cause des limites de comptage du système de détection. Dans ce travail, on contourne cette restriction en accroissant l'activité du traceur radioactif, en diminuant l'intervalle de temps d'échantillonnage et en modifiant le logiciel de traçage des particules de façon à reconnaître les détecteurs qui sont saturés et à utiliser uniquement les données venant des détecteurs non saturés restants. Une plus grande activité du traceur donne un écart type plus petit pour les coordonnées de traceur calculées. [source]


    Modulation of Viscoelasticity and HIV Transport as a Function of pH in a Reversibly Crosslinked Hydrogel

    ADVANCED FUNCTIONAL MATERIALS, Issue 18 2009
    Julie I. Jay
    Abstract Materials that respond to physiological stimuli are important in developing advanced biomaterials for modern therapies. The reversibility of covalent crosslinks formed by phenylboronate (PBA) and salicylhydroxamate (SHA) has been exploited to provide a pH-responsive gel for application to the vaginal tract. Dynamic rheology reveals that the gel frequency-dependent viscoelastic properties are modulated by pH. At pH 4.8 the viscous component dominates throughout most of the frequency range. As the pH increases, the characteristic relaxation time continues to increase while the G,Plateau levels off above pH 6. At pH 7.5, the elastic component dominates throughout the frequency sweep and is predominately independent of frequency. Particle tracking assesses the transport of both fluorescently labeled HIV-1 and 100-nm latex particles in the PBA,SHA crosslinked gel as a function of pH. At pH 4.8 the ensemble-averaged mean squared displacement at lag times greater than three seconds reveals that transport of the HIV-1 and 100-nm particles becomes significantly impeded by the matrix, exhibiting diffusion coefficients less than 0.0002,µm2 s,1. This pH-responsive gel thus displays properties that have the potential to significantly reduce the transport of HIV-1 to susceptible tissues and thus prevent the first stage of male-to-female transmission of HIV-1. [source]


    Solute transport in sand and chalk: a probabilistic approach

    HYDROLOGICAL PROCESSES, Issue 5 2006
    E. Carlier
    Abstract A probabilistic approach is used to simulate particle tracking for two types of porous medium. The first is sand grains with a single intergranular porosity. Particle tracking is carried out by advection and dispersion. The second is chalk granulates with intergranular and matrix porosities. Sorption can occur with advection and dispersion during particle tracking. Particle tracking is modelled as the sum of elementary steps with independent random variables in the sand medium. An exponential distribution is obtained for each elementary step and shows that the whole process is Markovian. A Gamma distribution or probability density function is then deduced. The relationships between dispersivity and the elementary step are given using the central limit theorem. Particle tracking in the chalky medium is a non-Markovian process. The probability density function depends on a power of the distance. Experimental simulations by dye tracer tests on a column have been performed for different distances and discharges. The probabilistic approach computations are in good agreement with the experimental data. The probabilistic computation seems an interesting and complementary approach to simulate transfer phenomena in porous media with respect to the traditional numerical methods. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    Analysis of Particle Size Distribution by Particle Tracking

    PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, Issue 5 2004
    Christiane Finder
    Abstract Particle tracking is performed using a combination of dark field or fluorescence video microscopy with automatic image analysis. The optical detection together with the image analysis software allows for the time resolved localization of individual particles with diameters between 100 and 1000,nm. Observation of their Brownian motion over a set of time intervals leads to the determination of their mean square displacements under the given room temperature and viscosity. Hereby, the radii of a set of particles visible within a given optical frame are derived simultaneously. Rapid data analysis leads to reliable particle size histograms. The applicability of this method is demonstrated on polystyrene latices and PMMA nanospheres with radii between 51,nm and 202,nm. [source]


    Travel Time to a Well Pumping an Unconfined Aquifer without Recharge

    GROUND WATER, Issue 4 2006
    Robert P. Chapuis
    A solution is given for the travel time to a well pumping an ideal, horizontal unconfined aquifer, under steady-state conditions, when recharge from infiltration is negligible. Three forms of the solution are provided: a closed-form solution, an integral to be calculated in a worksheet, and a simple equation. The three forms of the solution give travel times nearly identical to those obtained using a finite-element code for saturated and unsaturated flow and particle tracking. [source]


    Flowpath Delineation and Ground Water Age, Allequash Basin, Wisconsin

    GROUND WATER, Issue 7 2003
    Christine D. Pint
    An analysis of ground water flowpaths to a lake and creek in northern Wisconsin shows the flow system in a geologically simple basin dominated by lakes can be surprisingly complex. Differences in source area, i.e., lakes or terrestrial, combined with the presence of intervening lakes, which may or may not capture underflowing ground water as water moves downgradient from recharge areas, contribute to a complex mix of flowpaths. The result is water of different chemistry and vastly different ages may discharge in close proximity. Flowpaths, travel times, and capture zones in the Allequash Basin in northern Wisconsin were delineated using particle tracking based on a calibrated steady-state ground water flow model. The flowpath analysis supports the conclusions of Walker et al. (2003) who made inferences about flowpath characteristics from isotope and major ion chemistry. Simulated particle tracking agreed with Walker et al.'s measurements of water source (lake or terrestrial recharge) in the stream subsurface and also supported their assertion that ground water with a high calcium concentration in the lower basin of Allequash Lake is derived from long flowpaths. Numerical simulations show that ground water discharging in this area originates more than 5 km away in a source area located upgradient of Big Muskellunge Lake, which is upgradient of Allequash Lake. These results graphically illustrate that in settings with multiple sources of water with different age characteristics and converging flowlines (like the Allequash Basin) it may be difficult to obtain accurate estimates of ground water age by chemical analyses of ground water. [source]


    Ground Water Flow Analysis of a Mid-Atlantic Outer Coastal Plain Watershed, Virginia, U.S.A.

    GROUND WATER, Issue 2 2002
    Michael A. Robinson
    Models for ground water flow (MODFLOW) and particle tracking (MODPATH) were used to determine ground water flow patterns, principal ground water discharge and recharge zones, and estimates of ground water travel times in an unconfined ground water system of an outer coastal plain watershed on the Delmarva Peninsula, Virginia. By coupling recharge and discharge zones within the watershed, flowpath analysis can provide a method to locate and implement specific management strategies within a watershed to reduce ground water nitrogen loading to surface water. A monitoring well network was installed in Eyreville Creek watershed, a first-order creek, to determine hydraulic conductivities and spatial and temporal variations in hydraulic heads for use in model calibration. Ground water flow patterns indicated the convergence of flow along the four surface water features of the watershed; primary discharge areas were in the noontide portions of the watershed. Ground water recharge zones corresponded to the surface water features with minimal development of a regional ground water system. Predicted ground water velocities varied between < 0.01 to 0.24 m/day, with elevated values associated with discharge areas and areas of convergence along surface water features. Some ground water residence times exceeded 100 years, although average residence times ranged between 16 and 21 years; approximately 95% of the ground water resource would reflect land use activities within the last 50 years. [source]


    Modelling floodplain sedimentation using particle tracking

    HYDROLOGICAL PROCESSES, Issue 11 2007
    Ivo Thonon
    Abstract Both climate change and river rehabilitation projects induce changes in floodplain sedimentation. Notably along the lower River Rhine, the sediment deposition patterns and rates are subject to change. To assess the magnitude of these changes, we developed the MoCSED model, a floodplain sedimentation model within a geographical information system for the lower Rhine River. We based MoCSED on the ,method of characteristics' (MoC), a particle tracking method that minimizes numerical dispersion. We implemented the MoCSED model in the PCRaster dynamic modelling language. The model input comprises initial suspended sediment concentrations, water levels, flow velocities, and longitudinal and transverse dispersivities. We used a combination of the Krone and Chen concepts to calculate the subsequent sedimentation (SED routine). We compared the model results with sediment trap data for the Bemmel floodplain along the Dutch Waal River during the 2003 inundation. This comparison showed that MoCSED was able to simulate the pattern of sediment deposition. In addition, the model proved to be an improvement in comparison with a conventional raster-based floodplain sedimentation model for the lower River Rhine. In future, MoCSED may serve well to study the impact of a changing discharge regime due to climate change and floodplain rehabilitation plans on deposition of sediments. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    Solute transport in sand and chalk: a probabilistic approach

    HYDROLOGICAL PROCESSES, Issue 5 2006
    E. Carlier
    Abstract A probabilistic approach is used to simulate particle tracking for two types of porous medium. The first is sand grains with a single intergranular porosity. Particle tracking is carried out by advection and dispersion. The second is chalk granulates with intergranular and matrix porosities. Sorption can occur with advection and dispersion during particle tracking. Particle tracking is modelled as the sum of elementary steps with independent random variables in the sand medium. An exponential distribution is obtained for each elementary step and shows that the whole process is Markovian. A Gamma distribution or probability density function is then deduced. The relationships between dispersivity and the elementary step are given using the central limit theorem. Particle tracking in the chalky medium is a non-Markovian process. The probability density function depends on a power of the distance. Experimental simulations by dye tracer tests on a column have been performed for different distances and discharges. The probabilistic approach computations are in good agreement with the experimental data. The probabilistic computation seems an interesting and complementary approach to simulate transfer phenomena in porous media with respect to the traditional numerical methods. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    An arbitrary Lagrangian,Eulerian finite element method for finite strain plasticity

    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 4 2003
    Francisco Armero
    Abstract This paper presents a new arbitrary Lagrangian,Eulerian (ALE) finite element formulation for finite strain plasticity in non-linear solid mechanics. We consider the models of finite strain plasticity defined by the multiplicative decomposition of the deformation gradient in an elastic and a plastic part (F = FeFp), with the stresses given by a hyperelastic relation. In contrast with more classical ALE approaches based on plastic models of the hypoelastic type, the ALE formulation presented herein considers the direct interpolation of the motion of the material with respect to the reference mesh together with the motion of the spatial mesh with respect to this same reference mesh. This aspect is shown to be crucial for a simple treatment of the advection of the plastic internal variables and dynamic variables. In fact, this advection is carried out exactly through a particle tracking in the reference mesh, a calculation that can be accomplished very efficiently with the use of the connectivity graph of the fixed reference mesh. A staggered scheme defined by three steps (the smoothing, the advection and the Lagrangian steps) leads to an efficient method for the solution of the resulting equations. We present several representative numerical simulations that illustrate the performance of the newly proposed methods. Both quasi-static and dynamic conditions are considered in these model examples. Copyright © 2003 John Wiley & Sons, Ltd. [source]


    Numerical model for the prediction of dilute, three-dimensional, turbulent fluid,particle flows, using a Lagrangian approach for particle tracking and a CVFEM for the carrier phase

    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 5 2008
    L. A. Oliveira
    Abstract A numerical model for dilute, three-dimensional, turbulent, incompressible fluid,solid particle flows and its application to a demonstration problem are presented. An Eulerian description is used to model the flow of the fluid (carrier) phase, and the governing equations are solved using a control-volume finite element method (CVFEM). The motion of the solid (particulate) phase is simulated using a Lagrangian approach. An efficient algorithm is proposed for locating the particles in the finite element mesh. In the demonstration problem, which involves a particle-laden axisymmetric jet, a modified k,, turbulence model is used to characterize the velocity and length scales of the turbulent flow of the fluid phase. The effect of turbulence on the particle trajectories is accounted for through a stochastic model. The effect of the particles on the fluid time,mean velocity and turbulence (two-way coupling) is also addressed. Comparisons between predictions and available experimental data for the demonstration problem are presented. Satisfactory agreement is obtained. Copyright © 2008 John Wiley & Sons, Ltd. [source]


    Tracking bio-molecules in live cells using quantum dots

    JOURNAL OF BIOPHOTONICS, Issue 4 2008
    Yun-Pei Chang
    Abstract Single particle tracking (SPT) techniques were developed to explore bio-molecules dynamics in live cells at single molecule sensitivity and nanometer spatial resolution. Recent developments in quantum dots (Qdots) surface coating and bio-conjugation schemes have made them most suitable probes for live cell applications. Here we review recent advancements in using quantum dots as SPT probes for live cell experiments. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Sphingosine 1-phosphate induces cell contraction via calcium-independent/Rho-dependent pathways in undifferentiated skeletal muscle cells

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2004
    L. Formigli
    We have previously shown that sphingosine 1-phosphate (S1P) can induce intracellular Ca2+ mobilization and cell contraction in C2C12 myoblasts and that the two phenomena are temporally unrelated. Although Ca2+ -independent mechanisms of cell contraction have been the focus of numerous studies on Ca2+ sensitization of smooth muscle, comparatively less studies have focused on the role that these mechanisms play in the regulation of skeletal muscle contractility. Phosphorylation and activation of myosin by Rho-dependent kinase mediate most of Ca2+ -independent contractile responses. In the present study, we examined the potential role of Rho/Rho-kinase cascade activation in S1P-induced C2C12 cell contraction. First, we showed that depletion of Ca2+, by pre-treatment with BAPTA, did not affect S1P-induced myoblastic contractility, whereas it abolished S1P-induced Ca2+ transients. These results correlated with the absence of troponin C and with the immature cytoskeletal organization of these cells. Experimental evidence demonstrating the involvement of Rho pathway in S1P-stimulated myoblast contraction included: the activation/translocation of RhoA to the membrane in response to agonist-stimulation in cells depleted of Ca2+ and the inhibition of dynamic changes of the actin cytoskeleton in cells where Rho functions had been inhibited either by overexpression of RhoGDI, a physiological inhibitor of GDP dissociation from Rho proteins, or by pretreatment with Y-27632, a specific Rho kinase inhibitor. Contribution of protein kinase C in this cytoskeletal rearrangement was also evaluated. However, the pretreatment with Gö6976 or rottlerin, specific inhibitors of PKC, and PKC,, respectively, failed to inhibit the agonist-induced myoblastic contraction. Single particle tracking of G-actin fluorescent probe was performed to statistically evaluate actin cytoskeletal dynamics in response to S1P. Stimulation with S1P was also able to increase the phosphorylation level of myosin light chain II. In conclusion, our results strongly suggest that Ca2+ -independent/Rho-Rho kinase-dependent pathways may exert an important role in S1P-induced myoblastic cell contraction. J. Cell. Physiol. 198: 1,11, 2004© 2003 Wiley-Liss, Inc. [source]


    Mechanisms of particle dispersion in a turbulent, square duct flow

    AICHE JOURNAL, Issue 7 2009
    Michael Fairweather
    Abstract Particle dispersion in a square duct flow is studied using large eddy simulation combined with Lagrangian particle tracking under conditions of one-way coupling. The flow has a bulk Re = 250 k, with six particle sizes ranging from 5 to 1000 ,m. Results obtained for the fluid phase show good agreement with experimental data. For particles, predictions demonstrate that secondary flows within the duct dominate small particle dispersion and result in a uniform distribution, whereas gravity promotes the deposition of large particles on the duct floor. For the largest particles, the secondary flows contribute to particle concentration in corners on the duct floor, with these particles also clustering in low-velocity regions close to the floor. A detailed analysis of the influence of the flow on particle distribution is provided through consideration of the particle dispersion function, with the mechanisms of particle dispersion elucidated using a dynamical analysis. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source]


    Single-particle motion and heat transfer in fluidized beds

    AICHE JOURNAL, Issue 12 2006
    Yee Sun Wong
    Abstract Fluidized beds are particularly favored as chemical reactors because of their ability to exchange heat through immersed heat-exchange surfaces. However, little is known about how the heat-exchange process works on a single-particle level. The most commonly applied theory of fluidized bed heat exchange is that developed by Mickley and Fairbanks in the 1950s,the so-called packet model. The work described in this article is an attempt to understand the process of heat transfer by solids convection, using positron emission particle tracking to follow the trajectory of a single tracer particle in the bed. In particular, the residence time of particles in the vicinity of the surface is determined here for the first time. Using these data, the observed heat-transfer variations are interpreted mechanistically. © 2006 American Institute of Chemical Engineers AIChE J, 2006 [source]


    Experimental investigation of the hydrodynamics in a liquid,solid riser

    AICHE JOURNAL, Issue 3 2005
    Shantanu Roy
    Abstract Liquid,solid fluid dynamics has been investigated in a 6-in. (0.15 m) "cold-flow" circulating fluidized bed riser using non-invasive flow monitoring methods. Gamma-ray computed tomography (CT) was used to measure the time-averaged cross-sectional solids volume fraction distributions at several elevations. The time-averaged mean and "fluctuating" solids velocity fields were quantified using the computer-automated radioactive particle tracking (CARPT) technique. The experimental equipment, protocol of implementation, and data analysis have been discussed briefly, with particular emphasis on the specific features in the use of these techniques for studying high-density turbulent flows as in a liquid,solid riser. The experimental study examines nine operating conditions, that is, three liquid superficial velocities and three solids flow rates. The solids holdup profile is found to be relatively uniform across the cross section of the riser, with marginal segregation near the walls. The time-averaged solids velocity profiles are found to have a negative component at the walls, indicating significant solids backmixing. Detailed characterization of the solids velocity fields in terms of RMS velocities, kinetic energies, Hurst exponents, residence time distributions, trajectory length distributions, dispersion coefficients, and so forth are presented. Comparative and symbiotic analyses of the results were used to develop a coherent picture of the solids flow field. In addition, the work also serves to demonstrate the power and versatility of these flow-imaging techniques in studying highly turbulent and opaque multiphase systems. © 2005 American Institute of Chemical Engineers AIChE J, 51: 802,835, 2005 [source]


    Measuring velocity distributions of viscous fluids using positron emission particle tracking (PEPT)

    AICHE JOURNAL, Issue 7 2004
    S. Bakalis
    Abstract Positron emission particle tracking (PEPT) can be used to trace the path of a radioactive particle within opaque fluids in pilot-scale equipment; the method can track particles through several centimeters of metal. PEPT has been successfully used to follow isokinetic tracers in viscous fluids and thus to measure velocity distributions under both isothermal and nonisothermal conditions in pipe flow. The accuracy of the method decreased as the measured velocities increased; the faster the particle traveled, the less accurate its detection. For velocities of up to 0.5 m/s the accuracy of the method was acceptable. Agreement between experimentally measured and theoretical velocity distributions was very good, for a range of fluids and process conditions. As tracer particles are used, there were problems ensuring that all parts of the measurement volume were sampled. This is possible to overcome to an extent by adjusting particle size; 600-,m tracers did not pass within 1 mm from the tube wall, whereas 240-,m particles passed much closer to the boundaries of the flow. © 2004 American Institute of Chemical Engineers AIChE J, 50: 1606,1613, 2004 [source]


    A Separate Role for ICAM-1 and Fluid Shear in Regulating Leukocyte Interactions with Straight Regions of Venular Wall and Venular Convergences

    MICROCIRCULATION, Issue 6 2009
    RONEN SUMAGIN
    ABSTRACT Objective: Variation in expression of adhesion molecules plays a key role in regulating leukocyte behavior, but the contribution of fluid shear to these interactions cannot be ignored. Here, we dissected the effects of each of these factors on leukocyte behavior in different venular regions. Materials and Methods: Leukocyte behavior was quantified in blood-perfused microvascular networks in anesthetized mouse cremaster muscle, using intravital confocal microscopy. ICAM-1 expression and fluid shear rate were quantified by using ICAM-1 fluorescent labeling, fluorescent particle tracking, and computational fluid dynamics. Results: Tumor necrosis factor alpha induced an increase in ICAM-1 expression and abolished the differences observed among control venules of different sizes. Consequently, leukocyte adhesion was increased to a similar level across all vessel sizes [5.1±0.46 leukocytes/100 ,m vs. 2.1±0.47 (control)], but remained significantly higher in venular convergences (7.8±0.4). Leukocyte transmigration occurred primarily in the smallest venules and venular convergences (23.9±5.1 and 31.9±2.7 leukocytes/10,000 ,m2 tissue, respectively). In venular convergences, the two inlet vessels are predicted to create a region of low velocity, increasing leukocyte adhesion probability. Conclusions: In straight regions of different-sized venules, the variability in ICAM-1 expression accounts for the differences in leukocyte behavior; in converging regions, fluid shear potentially has a greater effect on leukocyte endothelial cell interactions. [source]


    Performance assessment of hanging funnel-and-gate structures designed by reverse particle tracking for capturing polluted groundwater

    REMEDIATION, Issue 3 2007
    Paul F. Hudak
    The objective of this study was to evaluate the capability of partially penetrating (hanging) funnel-and-gate structures, designed using reverse flow trajectories, for capturing plumes of contaminated groundwater. Linear capture structures, comprised of two slurry cutoff walls on either side of a permeable gate, were positioned perpendicular to regional groundwater flow in a hypothetical unconfined aquifer. A four-step approach was used for each of two simulated settings: (1) a numerical mass transport model generated a contaminant plume originating from a source area; (2) a particle-tracking model projected groundwater flow paths upstream from a treatment gate; (3) the structure was widened and deepened until bounding path lines contained the plume; and (4) mass transport simulation tested the ability of the structure to capture the plume. Results of this study suggest that designing funnel-and-gate structures using reverse particle tracking may result in too small a structure to capture a contaminant plume. This practice generally ignores effects of hydrodynamic dispersion, which may enlarge plumes such that contaminants move beneath or around a capture structure. This bypassing effect may be considerable even for low values of dispersivity. Particle-tracking approaches may also underestimate the amount of time required to reduce contaminant concentrations to acceptable levels. © 2007 Wiley Periodicals, Inc. [source]


    Bridging Mucosal Vessels Associated with Rhythmically Oscillating Blood Flow in Murine Colitis

    THE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 1 2008
    Aslihan Turhan
    Abstract Oscillatory blood flow in the microcirculation is generally considered to be the result of cardiopulmonary influences or active vasomotion. In this report, we describe rhythmically oscillating blood flow in the bridging vessels of the mouse colon that appeared to be independent of known biological control mechanisms. Corrosion casting and scanning electron microscopy of the mouse colon demonstrated highly branched bridging vessels that connected the submucosal vessels with the mucosal plexus. Because of similar morphometric characteristics (19 ± 11 ,m vs. 28 ± 16 ,m), bridging arterioles and venules were distinguished by tracking fluorescent nanoparticles through the microcirculation using intravital fluorescence videomicroscopy. In control mice, the blood flow through the bridging vessels was typically continuous and unidirectional. In contrast, two models of chemically induced inflammation (trinitrobenzenesulfonic acid and dextran sodium sulfate) were associated with a twofold reduction in flow velocity and the prominence of rhythmically oscillating blood flow. The blood oscillation was characterized by tracking the bidirectional displacement of fluorescent nanoparticles. Space,time plots and particle tracking of the oscillating segments demonstrated an oscillation frequency between 0.2 and 5.1 cycles per second. Discrete Fourier transforms demonstrated a power spectrum composed of several base frequencies. These observations suggest that inflammation-inducible changes in blood flow patterns in the murine colon resulted in both reduced blood flow velocity and rhythmic oscillations within the bridging vessels of the mouse colon. Anat Rec, 291:74,82, 2007. © 2007 Wiley-Liss, Inc. [source]


    Positron Imaging Studies of Rotating Drums

    THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 1 2005
    David J. Parker
    Abstract The potential of the radioisotope tracer technique of positron emission tomography (PET) and the related techniques of positron emission projection imaging (PEPI) and positron emission particle tracking (PEPT) is illustrated with reference to laboratory scale studies of particulate motion in rotating drums, operating either in batch or continuous flow modes. Sand grains, glass beads and TiO2 granules down to 0.5mm diameter were labelled. Using PEPT the transition between rolling and slumping modes has been identified and the velocity profile within the active layer has been determined for a range of drum diameters. PEPI has been used to measure and explain residence time distributions, while all three techniques have been used to study segregation based on particle size, both radially and axially within the drum. Data on particle motion within a novel baffled drum is also presented. Le potentiel de la technique de traçage par radio-isotopes en tomographie par émission de positrons (PET) et les techniques associées de l'imagerie par projection des émissions de positrons (PEPI) ou le traçage des particules par émission de positrons (PEPT), est illustré en référence à des études à l'échelle de laboratoire du déplacement de particules dans des tambours rotatifs, fonctionnant soit en mode d'écoulement discontinu ou continu. Des grains de sable, des billes de verre et des granules de TiO2 aussi petits que 0,5 mm de diamètre ont été marqués. À l'aide de la technique PEPT, la transition entre les modes roulant et glissant a été identifiée et le profil de vitesse à l'intérieur de la couche active a été déterminé pour une gamme de diamètres de tambours. La technique PEPI a été utilisée pour mesurer et expliquer les distributions de temps de séjour, tandis que les trois techniques ont servi pour l'analyse de la ségrégation d'après la taille des particules, à la fois radialement et axialement dans le tambour. Des données sur le déplacement des particules dans un nouveau tambour à chicanes sont également présentées. [source]


    Decreasing the Sampling Time Interval in Radioactive Particle Tracking

    THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 1 2003
    Navid Mostoufi
    Abstract The study of the movement of solids in multiphase reactors using radioactive particle tracking is currently limited to fairly modest particle velocities because of count-rate limitations of the detection system. In this work, this restriction was overcome by increasing the activity of the radioactive tracer, by decreasing the sampling time interval and by modifying the particle tracking software to recognize which detectors were saturated and to use only the data from the remaining unsaturated detectors. Higher tracer activity resulted in lower standard deviation of the calculated tracer coordinates. L'étude du mouvement des solides par traçage avec des particules radioactives dans un réacteur polyphasique est actuellement limitée à des vitesses de particules relativement modestes à cause des limites de comptage du système de détection. Dans ce travail, on contourne cette restriction en accroissant l'activité du traceur radioactif, en diminuant l'intervalle de temps d'échantillonnage et en modifiant le logiciel de traçage des particules de façon à reconnaître les détecteurs qui sont saturés et à utiliser uniquement les données venant des détecteurs non saturés restants. Une plus grande activité du traceur donne un écart type plus petit pour les coordonnées de traceur calculées. [source]


    Following the path of hydrophobic and hydrophilic particles in a Denver Cell using positron emission particle tracking

    ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 2 2009
    K. E. Waters
    Abstract Positron emission particle tracking (PEPT) has been used to track the movement of single particles of galena and quartz in a Denver Cell batch flotation system. The particles were labeled with a radionuclide, 18F, and using an ADAC Forte positron camera the positions of the particles were determined during mixing, and once air was added to the cell at a constant rate. The hydrophobic galena particle entered the froth readily, attached to air bubbles, and overflowed the weir. Detachment from an air bubble in the froth was also observed, and this is presumed to be due to coalescence events occurring. The hydrophilic quartz particle did not overflow the weir when the air flow was on. When the particle did enter the froth, it was along the sides of the vessel following the flow of the water. This gives a potential indication of one of the methods of the entrainment of gangue minerals in froth flotation. Copyright © 2009 Curtin University of Technology and John Wiley & Sons, Ltd. [source]