Partial Large Subunit (partial + large_subunit)

Distribution by Scientific Domains


Selected Abstracts


ON THE IDENTITY OF KARLODINIUM VENEFICUM AND DESCRIPTION OF KARLODINIUM ARMIGER SP.

JOURNAL OF PHYCOLOGY, Issue 1 2006
AND PIGMENT COMPOSITION, BASED ON LIGHT AND ELECTRON MICROSCOPY, NOV. (DINOPHYCEAE), NUCLEAR-ENCODED LSU RDNA
An undescribed species of the dinoflagellate genus Karlodinium J. Larsen (viz. K. armiger sp. nov.) is described from Alfacs Bay (Spain), using light and electron microscopy, pigment composition, and partial large subunit (LSU) rDNA sequence. The new species differs from the type species of Karlodinium (K. micrum (Leadbeater et Dodge) J. Larsen) by lacking rows of amphiesmal plugs, a feature presently considered to be a characteristic of Karlodinium. In K. armiger, an outer membrane is underlain by a complex system of cisternae and vacuoles. The pigment profile of K. armiger revealed the presence of chlorophylls a and c, with fucoxanthin as the major carotenoid. Phylogenetic analysis confirmed K. armiger to be related to other species of Karlodinium; thus forming a monophyletic genus, which, in the LSU tree, occupies a sister group position to Takayama de Salas, Bolch, Botes et Hallegraeff. The culture used by Ballantine to describe Gymnodinium veneficum Ballantine (Plymouth 103) was examined by light and electron microscopy and by partial LSU rDNA. Ultrastructurally, it proved identical to K. micrum (cultures Plymouth 207 and K. Tangen KT-77D, the latter also known as K-0522), and in LSU sequence, differed in only 0.3% of 1438 bp. We consider the two taxa to belong to the same species. This necessitates a change of name for the most widely found species, K. micrum, to K. veneficum. The three genera Karlodinium, Takayama, and Karenia constitute a separate evolutionary lineage, for which the new family Kareniaceae fam. nov. is suggested. [source]


DOMOIC ACID PRODUCTION By PSEUDO-NITZSCHIA SERIATA (BACILLARIOPHYCEAE) IN SCOTTISH WATERS,

JOURNAL OF PHYCOLOGY, Issue 4 2004
Johanna Fehling
In 1999, a 49,000 km2 area in western Scottish waters was closed to shellfish harvesting due to the amnesic shellfish poisoning (ASP) toxin domoic acid (DA). The only previously confirmed DA producer identified had been Pseudo-nitzschia australis Frenguelli. The toxin has appeared every year since and has led to more harvesting closures. We isolated and cultured two strains of Pseudo-nitzschia seriata f. seriata (P. T. Cleve) H. Peragallo from western Scottish waters in 2001 and 2002. They were identified using TEM analysis of their morphological fine structure and sequencing of the internal transcribed spacer (ITS)1, 5.8S, ITS2, and partial large subunit (LSU) rDNA. The morphology of the Scottish P. seriata f. seriata strains differed slightly, for example, in the number of poroid rows, from descriptions in identification keys. Comparison of P. seriata sequences with those of two co-occurring Pseudo-nitzschia australis isolates showed an overall divergence of only 0.012. Sequence divergence between both species was highest in the ITS1 region (0.036). Combined morphological and genetic approaches are needed to identify closely related Pseudo-nitzschia species. The P. seriata strains grew successfully at 15°C, suggesting that although seen as a psychrophilic species, it may also occur at higher water temperatures. All isolates produced DA in stationary phase (measured on day 25): 0.16,0.23 pg DA·cell,1 in P. seriata and 0.15,1.68 pg DA·cell,1 in P. australis. Our study is the first to identify P. seriata f. seriata as a DA producer in Scottish waters and indicates that at least it and P. australis can be responsible for ASP toxicity in that region. [source]


Informative Characteristics of 12 Divergent Domains in Complete Large Subunit rDNA Sequences from the Harmful Dinoflagellate Genus, Alexandrium (Dinophyceae)

THE JOURNAL OF EUKARYOTIC MICROBIOLOGY, Issue 2 2007
JANG-SEU KI
ABSTRACT. The genus Alexandrium includes organisms of interest, both for the study of dinoflagellate evolution and for their impacts as toxic algae affecting human health and fisheries. Only partial large subunit (LSU) rDNA sequences of Alexandrium and other dinoflagellates are available, although they contain much genetic information. Here, we report complete LSU rDNA sequences from 11 strains of Alexandrium, including Alexandrium affine, Alexandrium catenella, Alexandrium fundyense, Alexandrium minutum, and Alexandrium tamarense, and discuss their segmented domains and structure. Putative LSU rRNA coding regions were recorded to be around 3,400bp long. Their GC content (about 43.7%) is among the lowest when compared with other organisms. Furthermore, no AT-rich regions were found in Alexandrium LSU rDNA, although a low GC content was recorded within the LSU rDNA. No intron-like sequences were found. The secondary structure of the LSU rDNA and parsimony analyses showed that most variation in LSU rDNA is found in the divergent (D) domains with the D2 region being the most informative. This high D domain variability can allow members of the diverse Alexandrium genus to be categorized at the species level. In addition, phylogenetic analysis of the alveolate group using the complete LSU sequences strongly supported previous findings that the dinoflagellates and apicomplexans form a clade. [source]


Multilocus ribosomal RNA phylogeny of the leaf beetles (Chrysomelidae)

CLADISTICS, Issue 1 2008
Jesús Gómez-Zurita
Basal relationships in the Chrysomelidae (leaf beetles) were investigated using two nuclear (small and partial large subunits) and mitochondrial (partial large subunit) rRNA (, 3000 bp total) for 167 taxa covering most major lineages and relevant outgroups. Separate and combined data analyses were performed under parsimony and model-based tree building algorithms from dynamic (direct optimization) and static (Clustal and BLAST) sequence alignments. The performance of methods differed widely and recovery of well established nodes was erratic, in particular when using single gene partitions, but showed a slight advantage for Bayesian inferences and one of the fast likelihood algorithms (PHYML) over others. Direct optimization greatly gained from simultaneous analysis and provided a valuable hypothesis of chrysomelid relationships. The BLAST-based alignment, which removes poorly aligned sequence segments, in combination with likelihood and Bayesian analyses, resulted in highly defensible trees obtained in much shorter time than direct optimization, and hence is a viable alternative when data sets grow. The main taxonomic findings include the recognition of three major lineages of Chrysomelidae, including a basal "sagrine" clade (Criocerinae, Donaciinae, Bruchinae), which was sister to the "eumolpine" (Spilopyrinae, Eumolpinae, Cryptocephalinae, Cassidinae) plus "chrysomeline" (Chrysomelinae, Galerucinae) clades. The analyses support a broad definition of subfamilies (i.e., merging previously separated subfamilies) in the case of Cassidinae (cassidines + hispines) and Cryptocephalinae (chlamisines + cryptocephalines + clytrines), whereas two subfamilies, Chrysomelinae and Eumolpinae, were paraphyletic. The surprising separation of monocot feeding Cassidinae (associated with the eumolpine clade) from the other major monocot feeding groups in the sagrine clade was well supported. The study highlights the need for thorough taxon sampling, and reveals that morphological data affected by convergence had a great impact when combined with molecular data in previous phylogenetic analyses of Chrysomelidae. © The Willi Hennig Society 2007. [source]