Home About us Contact | |||
Partial Hepatectomy (partial + hepatectomy)
Kinds of Partial Hepatectomy Selected AbstractsDifferential Effects of Partial Hepatectomy and Carbon Tetrachloride Administration on Induction of Liver Cell Foci in a Model for Detection of Initiation ActivityCANCER SCIENCE, Issue 10 2001Hiroki Sakai Differential effects of partial hepatectomy (PH) and carbon tetrachloride (CC14) administration on induction of glutathione S-transferase placental form (GST-P)-positive foci were investigated in a model for detection of initiation activity. Firstly, we surveyed cell proliferation kinetics and fluctuation in cytochrome P450 (CYP) mRNA levels by means of relative-quantitative real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and CYP 2E1 apoprotein amount by immuno-blotting (experiment I) after PH or CC14 administration. Next, to assess the interrelationships among cell proliferation, fluctuation of CYPs after PH or CC14 administration and induction of liver cell foci, the non-hepatocarcinogen, 1,2-dimethylhydrazine (DMH) was administered to 7-week-old male F344 rats and initiated populations were selected using the resistant hepatocyte model (experiment II). In experiment I, the values of all CYP isozyme mRNAs after PH or CC14 administration were drastically decreased at the 12-h tune point. From 72 h, mRNAs for all CYP isozymes began increasing, with complete recovery after 7 days. The CYP 2E1 apoprotein content in the PH group fluctuated weakly, whereas in the CC14 group it had decreased rapidly after 12 h and was still low at the 48 h point. In experiment II, induction of GST-P-positive foci was related to cell kinetics in the PH group, with about a 6-h time lag between tune for carcinogen administration giving greatest induction of GST-P-positive foci and peaks in bromodeoxyuridine (BrdU) labeling, presumably due to the necessity for bioactivation of DMH. With CC14 administration, induction of foci appeared dependent on the recovery of CYP 2E1. In conclusion, PH was able to induce cell proliferation with maintenance of CYP 2E1, therefore being advantageous for induction of liver cell foci in models to detect initiation activity. [source] Earlier expression of the transcription factor HFH-11B diminishes induction of p21CIP1/WAF1 levels and accelerates mouse hepatocyte entry into S-phase following carbon tetrachloride liver injuryHEPATOLOGY, Issue 6 2001Xinhe Wang Partial hepatectomy (PH) or toxic liver injury induces the proliferation of terminally differentiated hepatic cells to regenerate the original size of the adult liver. Previous PH liver regeneration studies showed that premature transgenic expression of the Forkhead Box M1b (FoxM1b, HFH-11B) transcription factor accelerated hepatocyte entry into DNA replication (S-phase). In this study, we used carbon tetrachloride (CCl4) liver injury to induce a different type of mouse liver regeneration and show that premature hepatic HFH-11B levels also accelerate the onset of hepatocyte S-phase in this injury model. Unlike PH liver regeneration, earlier hepatocyte proliferation after CCl4 liver injury is correlated with diminished transgenic hepatic levels of p21CIP1/WAF1 at the G1/S transition of the cell cycle. Differential hybridization of cDNA arrays and RNase protection studies determined that CCl4 regenerating liver of transgenic mice displayed early stimulated expression of the S-phase promoting cyclin D1 and cyclin E and sustained levels of Cdc25a phosphatase genes. Compared with previous PH liver regeneration studies, our data suggest that premature expression of HFH-11B activates distinct S-phase promotion pathways in the CCl4 liver injury model. Although proliferating transgenic hepatocytes induced by either PH or CCl4 liver injury displayed early expression of identical M-phase cyclin genes (cyclin B1, B2, A2, and F), only CCl4 regenerating transgenic liver exhibited earlier expression of the M-phase promoting Cdc25b. These studies suggest that CCl4 injury of transgenic liver not only uses the same mechanisms as PH to mediate accelerated hepatocyte entry into mitosis, but also promotes M-phase entry by stimulating Cdc25b expression. [source] Use of radiolabelled iododeoxyuridine as adjuvant treatment for experimental tumours of the liverBRITISH JOURNAL OF SURGERY (NOW INCLUDES EUROPEAN JOURNAL OF SURGERY), Issue 10 2003J. S. Zager Background The aim of the study was to determine whether hepatic regeneration stimulates growth of tumour residing within the liver, and whether a difference in the rate of DNA synthesis in liver and tumour may be used to target cancer using the radiolabelled thymidine analogue 5-iodo-2,-deoxyuridine (IUdR). Methods Partial hepatectomy was performed on Buffalo rats bearing solitary nodules of syngeneic Morris hepatoma. Liver and tumour DNA synthesis was measured by incorporation of radioactive IUdR. [125I]IUdR was tested as an adjuvant therapy after hepatectomy in Buffalo rats bearing diffuse microscopic Morris hepatomas to simulate the clinical situation. Results Liver regeneration enhanced liver and tumour DNA synthesis as measured by incorporation of radioactive IUdR. Liver DNA synthesis returned to baseline by 7 days, whereas tumour DNA synthesis remained above baseline level. Hepatectomy enhanced the growth of microscopic liver tumours. [125I]IUdR (250 µCi or 1 mCi/kg) administered 4 days after hepatectomy significantly reduced tumour growth without signs of systemic toxicity or liver dysfunction. Conclusion The local environment of the regenerating liver stimulates tumour growth. The thymidine analogue [125I]IUdR may be used preferentially to target tumour DNA synthesis in the regenerating liver, and may prove useful as an adjuvant therapy for hepatic tumours after surgical resection. Copyright © 2003 British Journal of Surgery Society Ltd. Published by John Wiley & Sons, Ltd. [source] The value of microsurgery in liver researchLIVER INTERNATIONAL, Issue 8 2009Maria-Angeles Aller Abstract The use of an operating microscope in rat liver surgery makes it possible to obtain new experimental models and improve the already existing macrosurgical models. Thus, microsurgery could be a very valuable technique to improve experimental models of hepatic insufficiency. In the current review, we present the microsurgical techniques most frequently used in the rat, such as the portacaval shunt, the extrahepatic biliary tract resection, partial and total hepatectomies and heterotopic and orthotopic liver transplantation. Hence, reducing surgical complications allows for perfecting the resulting experimental models. Thus, liver atrophy related to portacaval shunt, prehepatic portal hypertension secondary to partial portal vein ligation, cholestasis by resection of the extrahepatic biliary tract, hepatic regeneration after partial hepatectomies, acute liver failure associated with subtotal or total hepatectomy and finally complications derived from preservation or rejection in orthotopic and heterotopic liver transplantation can be studied in more standardized experimental models. The results obtained are therefore more reliable and facilitates the flow of knowledge from the bench to the bedside. Some of these microsurgical techniques, because of their simplicity, can be performed by researchers without any prior surgical training. Other more complex microsurgical techniques require in-depth surgical training. These techniques are ideal for achieving a complete surgical training and more select microsurgical models for hepatology research. [source] Suppression of liver regeneration and hepatocyte proliferation in hepatocyte-targeted glypican 3 transgenic mice,HEPATOLOGY, Issue 3 2010Bowen Liu Glypican 3 (GPC3) belongs to a family of glycosylphosphatidylinositol-anchored, cell-surface heparan sulfate proteoglycans. GPC3 is overexpressed in hepatocellular carcinoma. Loss-of-function mutations of GPC3 result in Simpson-Golabi-Behmel syndrome, an X-linked disorder characterized by overgrowth of multiple organs, including the liver. Our previous study showed that GPC3 plays a negative regulatory role in hepatocyte proliferation, and this effect may involve CD81, a cell membrane tetraspanin. To further investigate GPC3 in vivo, we engineered transgenic (TG) mice overexpressing GPC3 in the liver under the control of the albumin promoter. GPC3 TG mice with hepatocyte-targeted, overexpressed GPC3 developed normally in comparison with their nontransgenic littermates but had a suppressed rate of hepatocyte proliferation and liver regeneration after partial hepatectomy. Moreover, gene array analysis revealed a series of changes in the gene expression profiles in TG mice (both in normal mice and during liver regeneration). In unoperated GPC3 TG mice, there was overexpression of runt related transcription factor 3 (7.6-fold), CCAAT/enhancer binding protein alpha (2.5-fold), GABA A receptor (2.9-fold), and wingless-related MMTV integration site 7B (2.8-fold). There was down-regulation of insulin-like growth factor binding protein 1 (8.4-fold), Rab2 (5.6-fold), beta-catenin (1.7-fold), transforming growth factor beta type I (3.1-fold), nodal (1.8-fold), and yes-associated protein (1.4-fold). Changes after hepatectomy included decreased expression in several cell cycle,related genes. Conclusion: Our results indicate that in GPC3 TG mice, hepatocyte overexpression of GPC3 suppresses hepatocyte proliferation and liver regeneration and alters gene expression profiles, and potential cell cycle,related proteins and multiple other pathways are involved and affected. (HEPATOLOGY 2010;52:1060,1067) [source] Cytosolic calcium regulates liver regeneration in the rat,HEPATOLOGY, Issue 2 2010Laura Lagoudakis Liver regeneration is regulated by growth factors, cytokines, and other endocrine and metabolic factors. Calcium is important for cell division, but its role in liver regeneration is not known. The purpose of this study was to understand the effects of cytosolic calcium signals in liver growth after partial hepatectomy (PH). The gene encoding the calcium-binding protein parvalbumin (PV) targeted to the cytosol using a nuclear export sequence (NES), and using a discosoma red fluorescent protein (DsR) marker, was transfected into rat livers by injecting it, in recombinant adenovirus (Ad), into the portal vein. We performed two-thirds PH 4 days after Ad-PV-NES-DsR or Ad-DsR injection, and liver regeneration was analyzed. Calcium signals were analyzed with fura-2-acetoxymethyl ester in hepatocytes isolated from Ad-infected rats and in Ad-infected Hela cells. Also, isolated hepatocytes were infected with Ad-DsR or Ad-PV-NES-DsR and assayed for bromodeoxyuridine incorporation. Ad-PV-NES-DsR injection resulted in PV expression in the hepatocyte cytosol. Agonist-induced cytosolic calcium oscillations were attenuated in both PV-NES,expressing Hela cells and hepatocytes, as compared to DsR-expressing cells. Bromodeoxyuridine incorporation (S phase), phosphorylated histone 3 immunostaining (mitosis), and liver mass restoration after PH were all significantly delayed in PV-NES rats. Reduced cyclin expression and retinoblastoma protein phosphorylation confirmed this observation. PV-NES rats exhibited reduced c-fos induction and delayed extracellular signal-regulated kinase 1/2 phosphorylation after PH. Finally, primary PV-NES,expressing hepatocytes exhibited less proliferation and agonist-induced cyclic adenosine monophosphate responsive element binding and extracellular signal-regulated kinase 1/2 phosphorylation, as compared with control cells. Conclusion: Cytosolic calcium signals promote liver regeneration by enhancing progression of hepatocytes through the cell cycle. (HEPATOLOGY 2010;) [source] MicroRNAs control hepatocyte proliferation during liver regeneration,HEPATOLOGY, Issue 5 2010Guisheng Song MicroRNAs (miRNAs) constitute a new class of regulators of gene expression. Among other actions, miRNAs have been shown to control cell proliferation in development and cancer. However, whether miRNAs regulate hepatocyte proliferation during liver regeneration is unknown. We addressed this question by performing 2/3 partial hepatectomy (2/3 PH) on mice with hepatocyte-specific inactivation of DiGeorge syndrome critical region gene 8 (DGCR8), an essential component of the miRNA processing pathway. Hepatocytes of these mice were miRNA-deficient and exhibited a delay in cell cycle progression involving the G1 to S phase transition. Examination of livers of wildtype mice after 2/3 PH revealed differential expression of a subset of miRNAs, notably an induction of miR-21 and repression of miR-378. We further discovered that miR-21 directly inhibits Btg2, a cell cycle inhibitor that prevents activation of forkhead box M1 (FoxM1), which is essential for DNA synthesis in hepatocytes after 2/3 PH. In addition, we found that miR-378 directly inhibits ornithine decarboxylase (Odc1), which is known to promote DNA synthesis in hepatocytes after 2/3 PH. Conclusion: Our results show that miRNAs are critical regulators of hepatocyte proliferation during liver regeneration. Because these miRNAs and target gene interactions are conserved, our findings may also be relevant to human liver regeneration. (HEPATOLOGY 2010) [source] Interplay of hepatic and myeloid signal transducer and activator of transcription 3 in facilitating liver regeneration via tempering innate immunity,HEPATOLOGY, Issue 4 2010Hua Wang Liver regeneration triggered by two-thirds partial hepatectomy is accompanied by elevated hepatic levels of endotoxin, which contributes to the regenerative process, but liver inflammation and apoptosis remain paradoxically limited. Here, we show that signal transducer and activator of transcription 3 (STAT3), an important anti-inflammatory signal, is activated in myeloid cells after partial hepatectomy and its conditional deletion results in an enhanced inflammatory response. Surprisingly, this is accompanied by an improved rather than impaired regenerative response with increased hepatic STAT3 activation, which may contribute to the enhanced liver regeneration. Indeed, conditional deletion of STAT3 in both hepatocytes and myeloid cells results in elevated activation of STAT1 and apoptosis of hepatocytes, and a dramatic reduction in survival after partial hepatectomy, whereas additional global deletion of STAT1 protects against these effects. Conclusion: An interplay of myeloid and hepatic STAT3 signaling is essential to prevent liver failure during liver regeneration through tempering a strong innate inflammatory response mediated by STAT1 signaling. (HEPATOLOGY 2010.) [source] Cyclin-dependent kinase 1 plays a critical role in DNA replication control during rat liver regeneration,HEPATOLOGY, Issue 6 2009Delphine Garnier Liver regeneration is a unique process to restore hepatic homeostasis through rapid and synchronous proliferation of differentiated hepatocytes. Previous studies have shown that hepatocyte proliferation is characterized by high expression levels of the "mitotic" cyclin-dependent kinase 1 (Cdk1) during S-phase compared to other mammalian cells. In the light of findings showing that Cdk1 compensates for the loss of Cdk2 and drives S-phase in Cdk2-deficient cells derived from Cdk2 knockout mice, we took advantage of the models of liver regeneration following partial hepatectomy and primary cultures of normal rat hepatocytes to further examine the involvement of Cdk1 during DNA replication in hepatocytes and to dissect specific cell cycle regulation in hepatocytes compared to control human foreskin fibroblasts. In hepatocytes, Cdk1 exhibited a biphasic activation pattern correlating S-phase and G2/M transition, bound to cyclin A or B1 and localized to the nucleus during DNA replication. Importantly, small interfering RNA (siRNA)-mediated silencing of Cdk1 led to a strong decrease in DNA synthesis without affecting centrosome duplication. Furthermore, in hepatocytes arrested by the iron chelator O-Trensox in early S-phase prior to DNA replication, Cdk1/cyclin complexes were active, while replication initiation components such as the minichromosome maintenance 7 (Mcm7) protein were loaded onto DNA. Moreover, Mcm7 expression and loading onto DNA were not modified by Cdk1 silencing. Conversely, in fibroblasts, Cdk1 expression and activation were low in S-phase and its silencing did not reduce DNA synthesis. Conclusion: Cdk1 is essential for DNA replication downstream formation of replication initiation complexes in hepatocytes but not in fibroblasts and, as such, our data exemplify crucial differences in the cell cycle regulation between various mammalian cell types. (HEPATOLOGY 2009.) [source] Loss of signal transducer and activator of transcription 5 leads to hepatosteatosis and impaired liver regeneration,HEPATOLOGY, Issue 2 2007Yongzhi Cui Growth hormone controls many facets of a cell's biology through the transcription factors Stat5a and Stat5b (Stat5). However, whole body deletion of these genes from the mouse does not provide portentous information on cell-specific cytokine signaling. To explore liver-specific functions of Stat5, the entire Stat5 locus was deleted in hepatocytes using Cre-mediated recombination. Notably, Stat5-mutant mice developed fatty livers and displayed impaired proliferation of hepatocytes upon partial hepatectomy (PHx). Loss of Stat5 led to molecular consequences beyond the reduced expression of Stat5 target genes, such as those encoding suppressor of cytokine signaling 2 (SOCS2), Cish, and insulin-like growth factor 1 (IGF-1). In particular, circulating growth hormone levels were increased and correlated with insulin resistance and increased insulin levels. Aberrant growth hormone (GH)-induced activation of the transcription factors Stat1 and Stat3 was observed in mutant livers. To test whether some of the defects observed in liver-specific Stat5 deficient mice were due to aberrant Stat1 expression and activation, we generated Stat1,/, mice with a hepatocyte-specific deletion of Stat5. Concomitant loss of both Stat5 and Stat1 restored cell proliferation upon PHx but did not reverse fatty liver development. Thus the molecular underpinnings of some defects observed in the absence of Stat5 are the consequence of a deregulated activation of other signal transducers and activators of transcription (STAT) family members. Conclusion: Aberrant cytokine-Stat5 signaling in hepatocytes alters their physiology through increased activity of Stat1 and Stat3. Such cross-talk between different pathways could add to the complexity of syndromes observed in disease. (HEPATOLOGY 2007.) [source] Cell cycle effects resulting from inhibition of hepatocyte growth factor and its receptor c-Met in regenerating rat livers by RNA interference,HEPATOLOGY, Issue 6 2007Shirish Paranjpe Hepatocyte growth factor (HGF) and its receptor c-Met are involved in liver regeneration. The role of HGF and c-Met in liver regeneration in rat following two-thirds partial hepatectomy (PHx) was investigated using RNA interference to silence HGF and c-Met in separate experiments. A mixture of 2 c-Met-specific short hairpin RNA (ShRNA) sequences, ShM1 and ShM2, and 3 HGF-specific ShRNA, ShH1, ShH3, and ShH4, were complexed with linear polyethylenimine. Rats were injected with the ShRNA/PEI complex 24 hours before and at the time of PHx. A mismatch and a scrambled ShRNA served as negative controls. ShRNA treatment resulted in suppression of c-Met and HGF mRNA and protein compared with that in controls. The regenerative response was assessed by PCNA, mitotic index, and BrdU labeling. Treatment with the ShHGF mixture resulted in moderate suppression of hepatocyte proliferation. Immunohistochemical analysis revealed severe suppression of incorporation of BrdU and complete absence of mitosis in rats treated with ShMet 24 hours after PHx compared with that in controls. Gene array analyses indicated abnormal expression patterns in many cell-cycle- and apoptosis-related genes. The active form of caspase 3 was seen to increase in ShMet-treated rats. The TUNEL assay indicated a slight increase in apoptosis in ShMet-treated rats compared with that in controls. Conclusion: The data indicated that in vivo silencing of c-Met and HGF mRNA by RNA interference in normal rats results in suppression of mRNA and protein, which had a measurable effect on proliferation kinetics associated with liver regeneration. (HEPATOLOGY 2007.) [source] Novel hepatic progenitor cell surface markers in the adult rat liver,HEPATOLOGY, Issue 1 2007Mladen I. Yovchev Hepatic progenitor/oval cells appear in injured livers when hepatocyte proliferation is impaired. These cells can differentiate into hepatocytes and cholangiocytes and could be useful for cell and gene therapy applications. In this work, we studied progenitor/oval cell surface markers in the liver of rats subjected to 2-acetylaminofluorene treatment followed by partial hepatectomy (2-AAF/PH) by using rat genome 230 2.0 Array chips and subsequent RT-PCR, immunofluorescent (IF), immunohistochemical (IHC) and in situ hybridization (ISH) analyses. We also studied expression of the identified novel cell surface markers in fetal rat liver progenitor cells and FAO-1 hepatoma cells. Novel cell surface markers in adult progenitor cells included tight junction proteins, integrins, cadherins, cell adhesion molecules, receptors, membrane channels and other transmembrane proteins. From the panel of 21 cell surface markers, 9 were overexpressed in fetal progenitor cells, 6 in FAO-1 cells and 6 are unique for the adult progenitors (CD133, claudin-7, cadherin 22, mucin-1, ros-1, Gabrp). The specificity of progenitor/oval cell surface markers was confirmed by ISH and double IF analyses. Moreover, study of progenitor cells purified with Ep-CAM antibodies from D-galactosamine injured rat liver, a noncarcinogenic model of progenitor cell activation, verified that progenitor cells expressed these markers. Conclusion: We identified novel cell surface markers specific for hepatic progenitor/oval cells, which offers powerful tool for their identification, isolation and studies of their physiology and pathophysiology. Our studies also reveal the mesenchymal/epithelial phenotype of these cells and the existence of species diversity in the hepatic progenitor cell identity. (HEPATOLOGY 2007;45:139,149.) [source] An MLCK-dependent window in late G1 controls S phase entry of proliferating rodent hepatocytes via ERK-p70S6K pathway,HEPATOLOGY, Issue 1 2006Anne Bessard We show that MLCK (myosin light chain kinase) plays a key role in cell cycle progression of hepatocytes: either chemical inhibitor ML7 or RNA interference led to blockade of cyclin D1 expression and DNA replication, providing evidence that MLCK regulated S phase entry. Conversely, inhibition of RhoK by specific inhibitor Y27632 or RhoK dominant-negative vector did not influence progression in late G1 and S phase entry. Inhibition of either MLCK or RhoK did not block ERK1/2 phosphorylation, whereas MLCK regulated ERK2-dependent p70S6K activation. In addition, DNA synthesis was reduced in hepatocytes treated with p70S6K siRNA, demonstrating the key role played by the kinase in S phase entry. Interestingly, after the G1/S transition, DNA replication in S phase was no longer dependent on MLCK activity. We strengthened this result by ex vivo experiments and evidenced an MLCK-dependent window in late G1 phase of regenerating liver after two-thirds partial hepatectomy. In conclusion, our results underline an MLCK-dependent restriction point in G1/S transition, occurring downstream of ERK2 through the regulation of p70S6K activation, and highlighting a new signaling pathway critical for hepatocyte proliferation. (HEPATOLOGY 2006;44:152,163.) [source] Expression of a cyclin E1 isoform in mice is correlated with the quiescent cell cycle status of hepatocytes in vivo,HEPATOLOGY, Issue 1 2006Nils-Holger Zschemisch Cyclin E1 controls G1/S phase transition of the eukaryotic cell cycle. We report the impact of alternative spliced cyclin E1 isoforms on cell cycle regulation in hepatocytes. We show that expression of new cyclin E1 mRNA variants IN3, ,4, and ,5 is associated with retarded proliferation in murine hepatocellular carcinoma. Additionally, we demonstrate that a new cyclin E1 isoform ,3/8 lacking the central part of wild-type mRNA is expressed predominantly in nonproliferating murine hepatocytes. Following partial hepatectomy, ,3/8 is downregulated when hepatocytes enter the cell cycle from quiescence. The ,3/8 protein does not exhibit any cyclin box motif but binds cyclin-dependent kinase 2 without stimulating kinase activity. We demonstrate that ,3/8 lacks any nuclear localization signal and is exclusively located in the cytoplasm. Overexpression of ,3/8 in cultured cells leads to a delayed G0-G1 transition, indicating that this splice variant helps to maintain a quiescent state of hepatocytes. In conclusion, we identified an isoform of cyclin E1 involved in G0 maintenance and suggest an additional mechanism for cell cycle control. (HEPATOLOGY 2006;44:164,173.) [source] HIP/PAP accelerates liver regeneration and protects against acetaminophen injury in mice,HEPATOLOGY, Issue 3 2005Hanh-Tu Lieu Human hepatocarcinoma-intestine-pancreas/pancreatic-associated protein HIP/PAP is a secreted C-type lectin belonging to group VII, according to Drickamer's classification. HIP/PAP is overexpressed in liver carcinoma; however, its functional role remains unclear. In this study, we demonstrate that HIP/PAP is a paracrine hepatic growth factor promoting both proliferation and viability of liver cells in vivo. First, a low number of implanted hepatocytes deriving from HIP/PAP-transgenic mice (<1:1,000) was sufficient to stimulate overall recipient severe combined immunodeficiency liver regeneration after partial hepatectomy. After a single injection of HIP/PAP protein, the percentages of bromodeoxyuridine-positive nuclei and mitosis were statistically higher than after saline injection, indicating that HIP/PAP acts as a paracrine mitogenic growth factor for the liver. Comparison of the early events posthepatectomy in control and transgenic mice indicated that HIP/PAP accelerates the accumulation/degradation of nuclear phospho,signal transducer activator transcription factor 3 and tumor necrosis factor , level, thus reflecting that HIP/PAP accelerates liver regeneration. Second, we showed that 80% of the HIP/PAP-transgenic mice versus 25% of the control mice were protected against lethal acetaminophen-induced fulminate hepatitis. A single injection of recombinant HIP/PAP induced a similar cytoprotective effect, demonstrating the antiapoptotic effect of HIP/PAP. Comparison of Cu/Zn superoxide dismutase activity and glutathione reductase-like effects in control and transgenic liver mice indicated that HIP/PAP exerts an antioxidant activity and prevents reactive oxygen species-induced mitochondrial damage by acetaminophen overdose. In conclusion, the present data offer new insights into the biological functions of C-type lectins. In addition, HIP/PAP is a promising candidate for the prevention and treatment of liver failure. (HEPATOLOGY 2005;42:618,626.) [source] Cellular responses in experimental liver injury: Possible cellular origins of regenerative stem-like progenitor cells,HEPATOLOGY, Issue 5 2005William B. Coleman Ph.D. Background/Aims Mature hepatocytes divide to restore liver mass after injury. However, when hepatocyte division is impaired by retrorsine poisoning, regeneration proceeds from another cell type: the small hepatocyte-like progenitor cells (SHPCs). Our aim was to test whether SHPCs could originate from mature hepatocytes. Methods Mature hepatocytes were genetically labeled using retroviral vectors harboring the ,-galactosidase gene. After labeling, retrorsine was administered to rats followed by partial hepatectomy to trigger regeneration. A liver biopsy was performed one month after surgery and rats were sacrificed one month later. Results We observed the proliferation of small hepatocytes arranged in clusters in liver biopsies. These cells expressed Ki67 antigen and displayed high mitotic index. At sacrifice, regeneration was completed and clusters had merged. A significant proportion of clusters also expressed ,-galactosidase demonstrating their origin from labeled mature hepatocytes. Finally, the overall proportion of ,-galactosidase positive cells was identical at the time of hepatectomy as well as in liver biopsy and at sacrifice. Conclusions The constant proportion of ,-galactosidase positive cells during the regeneration process demonstrates that mature hepatocytes are randomly recruited to proliferate and compensate parenchyma loss in this model. Furthermore, mature hepatocytes are the source of SHPC after retrorsine injury. [source] Disruption of hepatic adipogenesis is associated with impaired liver regeneration in miceHEPATOLOGY, Issue 6 2004Eyal Shteyer The liver responds to injury with regulated tissue regeneration. During early regeneration, the liver accumulates fat. Neither the mechanisms responsible for nor the functional significance of this transient steatosis have been determined. In this study, we examined patterns of gene expression associated with hepatic fat accumulation in regenerating liver and tested the hypothesis that disruption of hepatic fat accumulation would be associated with impaired hepatic regeneration. First, microarray-based gene expression analysis revealed that several genes typically induced during adipocyte differentiation were specifically upregulated in the regenerating liver prior to peak hepatocellular fat accumulation. These observations suggest that hepatic fat accumulation is specifically regulated during liver regeneration. Next, 2 methods were employed to disrupt hepatocellular fat accumulation in the regenerating liver. Because exogenous leptin supplementation reverses hepatic steatosis in leptin-deficient mice, the effects of leptin supplementation on liver regeneration in wild-type mice were examined. The data showed that leptin supplementation resulted in suppression of hepatocellular fat accumulation and impairment of hepatocellular proliferation during liver regeneration. Second, because glucocorticoids regulate cellular fat accumulation during adipocyte differentiation, the effects of hepatocyte-specific disruption of the glucocorticoid receptor were similarly evaluated. The results showed that hepatic fat accumulation and hepatocellular proliferation were also suppressed in mice with liver specific disruption of glucocorticoid receptor. In conclusion, suppression of hepatocellular fat accumulation is associated with impaired hepatocellular proliferation following partial hepatectomy, indicating that hepatocellular fat accumulation is specifically regulated during and may be essential for normal liver regeneration. (HEPATOLOGY 2004;40:1322,1332.) [source] Aging does not reduce the hepatocyte proliferative response of mice to the primary mitogen TCPOBOPHEPATOLOGY, Issue 4 2004Giovanna M. Ledda-Columbano It has been shown that the magnitude of DNA synthesis and the time at which maximal DNA synthesis occurs after two-thirds partial hepatectomy (PH) is greatly reduced in the liver of aged rodents compared to young animals. This reduction could represent an intrinsic defect in proliferation or a more specialized change in the response to PH. We therefore evaluated the proliferative capacity of hepatocytes in aged animals, following treatment with primary liver mitogens. We show that treatment of 12-month-old CD-1 mice with the hepatomitogen 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) caused an increase in hepatocyte proliferation similar to that seen in young (8-week-old) mice. The labeling index was 82% in the livers of aged mice versus 76% in young animals. Histological observation demonstrated that the number of hepatocytes entering mitoses was similar in both groups; the mitotic indices were 2.5 per thousand and 2.7 per thousand, respectively. Additional experiments showed that the timing of DNA synthesis and M phase were nearly identical in both aged and young mice. Stimulation of hepatocyte DNA synthesis was associated with increased expression of several cell cycle-associated proteins (cyclin D1, cyclin A, cyclin B1, E2F, pRb, and p107); all were comparable in aged mice and young mice. TCPOBOP treatment also increased expression of the Forkhead Box transcription factor m1b (Foxm 1b) to a similar degree in both groups. In conclusion, hepatocytes retain their proliferative capacity in old age despite impaired liver regeneration. These findings suggest that therapeutic use of mitogens would alleviate the reduction in hepatocyte proliferation observed in the elderly. (Hepatology 2000;40:981,988). [source] Growth hormone stimulates proliferation of old-aged regenerating liver through forkhead box m1bHEPATOLOGY, Issue 6 2003Katherine Krupczak-Hollis The Forkhead Box (Fox) proteins are an extensive family of transcription factors that shares homology in the winged helix DNA-binding domain and the members of which play essential roles in cellular proliferation, differentiation, and longevity. Reduced cellular proliferation during aging is associated with a progressive decline in both growth hormone (GH) secretion and Foxm1b expression. Liver regeneration studies with 12-month-old (old-aged) transgenic mice indicated that increased hepatocyte expression of Foxm1b alone is sufficient to restore hepatocyte proliferation to levels found in 2-month-old (young) regenerating liver. GH therapy in older people has been shown to cause an increase in cellular proliferation, but the transcription factors that mediated this stimulation in proliferation remain uncharacterized. In this study, we showed that human GH administration to old-aged Balb/c mice dramatically increased both expression of Foxm1b and regenerating hepatocyte proliferation. This increase in old-aged regenerating hepatocyte proliferation was associated with elevated protein expression of Cdc25A, Cdc25B, and cyclin B1, with reduced protein levels of cyclin-dependent kinase inhibitor p27Kip1 (p27). GH treatment also was found to stimulate hepatocyte proliferation and expression of Foxm1b protein without partial hepatectomy (PHx). Furthermore, GH treatment of young Foxm1b ,/, mice failed to restore regenerating hepatocyte DNA replication and mitosis caused by Foxm1b deficiency. These genetic studies provided strong evidence that the presence of Foxm1b is essential for GH to stimulate regenerating hepatocyte proliferation. In conclusion, our old-aged liver regeneration studies show that increased Foxm1b levels are essential for GH to stimulate hepatocyte proliferation, thus providing a mechanism for GH action in the elderly. [source] Role of V, 14 NKT cells in the development of impaired liver regeneration in vivoHEPATOLOGY, Issue 5 2003Hiroyasu Ito Although we have previously demonstrated that IL-12 stimulation increases the number of hepatic natural killer (NK) T (NKT) cells and enhances liver injury during the early phase of liver regeneration, the role of NKT cells has remained unknown. We therefore evaluated the influence of NKT cells activated by IL-12 or by ,-galactosylceramide (,-GalCer) on murine liver regeneration using V, 14 NKT knockout (J, 281,/,) mice. Levels of serum alanine aminotransferase (sALT) 24 hours after partial hepatectomy were enhanced in J, 281+/+ but not in J, 281,/, mice by both procedures. Hepatic NKT cells expressed considerably more interferon (IFN) , and tumor necrosis factor , (TNF-,) messenger RNA (mRNA) after stimulation with both factors in J, 281+/+ mice. Either anti-IFN-, or TNF-, antibody inhibited the enhancement of liver injury. Furthermore, recombinant TNF-, injection similarly caused injury in hepatectomized livers of both J, 281+/+ and J, 281,/, mice; indeed, adoptively transferred TNF-,+/+ NKT cells enhanced liver injury after hepatectomy in TNF-, knockout mice. TNF receptor expressions on hepatocytes increased and peaked 24 hours after partial hepatectomy. In conclusion, simultaneous TNF-, synthesis and high levels of TNF receptor expression on hepatocytes cause severe liver damage by activated NKT cells during liver regeneration. [source] p53 may positively regulate hepatocyte proliferation in ratsHEPATOLOGY, Issue 2 2002Yukiko Inoue p53, known as a tumor suppressor gene, is a transcription factor that regulates various cellular functions. Recently, several growth factor gene promoters, including that of transforming growth factor , (TGF-,), were shown to be direct targets of p53-mediated transcription. Hepatic p53 mRNA is up-regulated during liver regeneration in rats. The aim of this study is to examine the role of p53 in hepatocyte proliferation. p53 protein levels were examined in rat hepatocytes cultured in the medium containing hepatocyte growth factor (HGF). p53 levels began to increase after 6 hours of incubation, reached a maximum at 18 hours, and decreased thereafter. DNA synthesis increased at 12 hours and peaked at 30 hours. When hepatocytes were incubated with p53 antisense oligonucleotide in addition to HGF, increases of p53 and TGF-, levels were suppressed, and DNA synthesis was reduced. The increases of TGF-, levels and DNA synthesis were also suppressed by a chemical inhibitor of p53, pifithrin-,. In rats after two-thirds partial hepatectomy, hepatic p53 increased and reached maximal levels around 16 hours when hepatic HGF levels have been shown to reach a maximum followed by an increase in hepatic TGF-, levels or hepatocyte proliferation. In contrast, sham-operated rats showed minor elevations of hepatic p53 levels. In conclusion, p53 production is stimulated by HGF and may contribute to the proliferation of rat hepatocytes. Considering previous findings indicating the importance of endogenous TGF-, for the proliferation of hepatocytes stimulated by HGF, TGF-, might play a role in HGF-p53 mediated hepatocyte proliferation. [source] A novel mechanism for mitogenic signaling via pro,transforming growth factor , within hepatocyte nucleiHEPATOLOGY, Issue 6 2002Bettina Grasl-Kraupp Transforming growth factor (TGF) ,, an important mediator of growth stimulation, is known to act via epidermal growth factor receptor (EGF-R) binding in the cell membrane. Here we show by immunohistology, 2-dimensional immunoblotting, and mass spectrometry of nuclear fractions that the pro-protein of wild-type TGF-, occurs in hepatocyte nuclei of human, rat, and mouse liver. Several findings show a close association between nuclear pro-TGF-, and DNA synthesis. (1) The number of pro-TGF-,+ nuclei was low in resting liver and increased dramatically after partial hepatectomy and after application of hepatotoxic chemicals or the primary mitogen cyproterone acetate (CPA); in any case, S phase occurred almost exclusively in pro-TGF-,+ nuclei. The same was found in human cirrhotic liver. (2) In primary culture, 7% of hepatocytes synthesized pro-TGF-,, which then translocated to the nucleus; 70% of these nuclei subsequently entered DNA replication, whereas only 2% of pro-TGF-,, hepatocytes were in S phase. (3) The frequency of hepatocytes coexpressing pro-TGF-, and DNA synthesis was increased by the hepatomitogens CPA or prostaglandin E2 and was decreased by the growth inhibitor TGF-,1. (4) Treatment with mature TGF-, increased DNA synthesis exclusively in pro-TGF-,, hepatocytes, which was abrogated by the EGF-R tyrosine kinase inhibitor tyrphostin A25. In conclusion, TGF-, gene products may exert mitogenic effects in hepatocytes via 2 different signaling mechanisms: (1) the "classic" pathway of mature TGF-, via EGF-R in the membrane and (2) a novel pathway involving the presence of pro-TGF-, in the nucleus. [source] Interleukin-6 from intrahepatic cells of bone marrow origin is required for normal murine liver regenerationHEPATOLOGY, Issue 1 2002Xavier Aldeguer Interleukin-6 (IL-6) is required for normal liver regeneration, but the specific cellular source of this growth factor is unknown. We investigated whether this signal originates from the resident macrophage, the Kupffer cell. Using a murine model of bone marrow transplantation, we replaced recipient bone marrow,derived cells, including Kupffer cells, with cells of donor genetic phenotype. Recipients deficient in IL-6 (IL-6,/,) were lethally irradiated, then rescued with 107 donor bone marrow cells capable of expressing IL-6 (IL-6+/+). Conversely, IL-6+/+ recipients received IL-6,/, marrow. Successful engraftment was measured by the presence of the Y chromosome SRY locus in the livers of female recipients receiving male marrow, in situ IL-6 expression by Kupffer cells, and up-regulation of IL-6 in splenocytes after activation with lipopolysaccharide (LPS). Kupffer cell isolation in IL-6,/, females receiving IL-6+/+ male marrow clearly showed the presence of the SRY locus and IL-6 disrupted allele, whereas males receiving female marrow demonstrated no SRY or IL-6 signals, confirming the extent of replacement. Replacement of these cells in IL-6,/, mice with IL-6+/+ bone marrow successfully restored the regenerative response after partial hepatectomy (PHx) as indicated by signal transduction and activator of transcription 3 (STAT3) activation and hepatocyte DNA replication. Alternatively, complete replacement of Kupffer cells in IL-6+/+ mice by transplantation with IL-6,/, cells significantly inhibited liver regeneration and was partially restored by administration of IL-6. This investigation demonstrates a paracrine mechanism by which cells of bone marrow origin, most likely Kupffer cells, regulate the regenerative capacity of the hepatocyte through IL-6 expression. [source] The processing and utilization of hepatocyte growth factor/scatter factor following partial hepatectomy in the ratHEPATOLOGY, Issue 4 2001Peter Pediaditakis Hepatocyte growth factor/scatter factor (HGF/SF) is a pluripotent growth factor capable of acting as a motogen, a morphogen, and a mitogen. Originally, HGF/SF was found as a blood-borne mitogen for hepatocytes and has since been determined to be very important in liver repair. Previous studies have established that HGF/SF must be proteolytically cleaved to elicit its effects. After liver injury by toxins such as carbon tetrachloride or after surgical resection, partial hepatectomy (PHX), HGF/SF concentrations increase in the blood. The aims of this study were to examine (1) which form of HGF/SF is present in the normal liver, (2) which form is present in the regenerating liver after PHX, and (3) if the HGF/SF used after PHX is derived from existing liver reservoirs. Both single-chain HGF/SF and active two-chain HGF/SF are present in normal liver, with the former being the dominant form. After PHX, the liver can be described as having two phases with regard to the use of endogenous HGF/SF. The first phase from 0 to 3 hours is the consumptive phase and is characterized by a decrease in both single-chain HGF/SF and active two-chain HGF/SF. The second phase is the productive phase. It is characterized by a pronounced reappearance of both single-chain HGF/SF as well as two-chain HGF/SF. The activation index shows a 5-fold increase over sham operations during the productive phase. The use of radiolabeled HGF/SF showed that during the first 3 hours, HGF/SF is used in part from hepatic stores. Furthermore, during the first 3 hours after PHX, only active two-chain HGF/SF is seen in the plasma. [source] A modified choline-deficient, ethionine-supplemented diet protocol effectively induces oval cells in mouse liverHEPATOLOGY, Issue 3 2001Barbara Akhurst Several reliable and reproducible methods are available to induce oval cells in rat liver. Effective methods often involve inhibiting proliferation in hepatocytes using an alkylating agent, then subjecting the rat to partial hepatectomy (PH). The surgery is difficult to perform reproducibly in mice. Approaches that do not include partial hepatectomy, such as administration of D -galactosamine, are ineffective in mice. We found that a choline-deficient, ethionine-supplemented (CDE) diet, which is very effective in rats, leads to high morbidity and mortality when administered to mice. This article outlines an alternative protocol by which a CDE diet can be administered to mice. This diet is shown to be highly effective for oval cell induction, without causing high mortality. It takes less time and is at least as effective as other commonly used protocols for inducing oval cells in mice. (HEPATOLOGY 2001;34:519-522.) [source] Effect of porto-systemic shunting on NOS expression after extended hepatectomy in ratsHEPATOLOGY RESEARCH, Issue 1 2009Hironori Hayashi Aim:, Several surgical procedures have been developed for reducing portal vein pressure to prevent postoperative liver injury. Nitric oxide synthase expression (NOS) induced by elevation of portal vein pressure is thought to play an important role in liver regeneration, but the details are not well understood. Methods:, Rats in the control group and in the subcutaneous splenic transposition (SST) group underwent 90% partial hepatectomy. Survival and portal vein pressure were analyzed. The serum IL-6 and TNF-, levels were measured by enzyme-linked immunosorbent assay (ELISA). Hepatocyte proliferation and apoptosis 12 hours after hepatectomy were analyzed immunohistochemically. The protein and messenger RNA expression of inducible and endothelial NOS were analyzed using Western blotting and quantitative reverse transcriptase polymerase chain reaction, respectively. Results:, The survival rate of the SST group was significantly higher. Portal vein pressure, TNF-, level and the apoptotic index were significantly lower in the SST group. Twelve hours after surgery, liver inducible NOS (iNOS) protein expression was significantly lower in the SST group. However, protein expression of endothelial NOS was not significantly different between the groups. Conclusion:, Inducible NOS expression after extended hepatectomy is related to the effects of porto-systemic shunting on the splanchnic circulation. Also, iNOS induction and concomitant nitric oxide generation appear to participate in the cytotoxicity of excessive portal pressure after extended hepatectomy. [source] Liver failure following partial hepatectomyHPB, Issue 3 2006Thomas S. Helling Abstract While major liver resections have become increasingly safe due to better understanding of anatomy and refinement of operative techniques, liver failure following partial hepatectomy still occurs from time to time and remains incompletely understood. Observationally, certain high-risk circumstances exist, namely, massive resection with small liver remnants, preexisting liver disease, and advancing age, where liver failure is more likely to happen. Upon review of available clinical and experimental studies, an interplay of factors such as impaired regeneration, oxidative stress, preferential triggering of apoptotic pathways, decreased oxygen availability, heightened energy-dependent metabolic demands, and energy-consuming inflammatory stimuli work to produce failing hepatocellular functions. [source] Surgical treatment of liver metastases from pancreatic cancerHPB, Issue 2 2006Hidehisa Yamada PhD Abstract Pancreatic cancer is a disease with a poor prognosis. Most patients are diagnosed at an advanced and unresectable stage. Even if the primary cancer is radically removed, postoperative recurrence frequently occurs. Generally, metastatic liver tumors from pancreatic cancer are not indicated for surgical treatment. Here we evaluate the results of performing hepatectomy for liver metastases of pancreatic cancer. In our institute, six patients with liver metastases from pancreatic cancer were treated by partial hepatectomy. Overall 1-, 3- and 5-year survival rates of six patients after hepatectomy were 66.7%, 33.3% and 16.7%, respectively, and one patient was alive for 65.4 months. Performing a hepatectomy for liver metastases of pancreatic cancer, when combined with a pancreas resection, was recently considered to be a safe operation, and one that might offer prolonged survival for highly selected patients with curative resection of liver metastases. In the future, it will be necessary to develop new multi-modality therapies to improve the prognosis of pancreatic cancer. [source] Hepatectomy for pyogenic liver abscessHPB, Issue 2 2003RW Strong Background Commensurate with the advances in diagnostic and therapeutic radiology in the past two decades, percutaneous needle aspiration and catheter drainage have replaced open operation as the first choice of treatment for both single and multiple pyogenic liver abscesses. There has been little written on the place of surgical resection in the treatment of pyogenic liver abscess due to underlying hepatobiliary pathology or after failure of non-operative management. Methods The medical records of patients who underwent resection for pyogenic liver abscess over a 15-year period were retrospectively reviewed. The demographics, time from onset of symptoms to medical treatment and operation, site of abscess, organisms cultured, aetiology, reason for operation, type of resection and outcome were analysed. There were 49 patients in whom the abscesses were either single (19), single but multiloculated (11) or multiple (19). The median time from onset of symptoms to medical treatment was 21 days and from treatment to operation was 12 days. The indications for operation were underlying hepatobiliary pathology in 20% and failed non-operative treatment in 76%. Two patients presented with peritonitis from a ruptured abscess. Results The resections performed were anatomic (44) and non-anatomic (5). No patient suffered a recurrent abscess or required surgical or radiological intervention for any abdominal collection. Antibiotics were ceased within 5 days of operation in all but one patient. The median postoperative stay was 10 days. There were two deaths (4%), both following rupture of the abscess. Discussion Except for an initial presentation with intraperitoneal rupture and, possibly, cases of hepatobiliary pathology causing multiple abscesses above an obstructed duct system that cannot be negotiated non-operatively, primary surgical treatment of pyogenic liver abscess is not indicated. Non-operative management with antibiotics and percutaneous aspiration/drainage will be successful in most patients. If non-operative treatment fails, different physical characteristics of the abscesses are likely to be present and partial hepatectomy of the involved portion of liver is good treatment when performed by an experienced surgeon. [source] Effect of granulocyte-macrophage colony-stimulating factor on hepatic regeneration after 70% hepatectomy in normal and cirrhotic ratsHPB, Issue 2 2002A Ero Background Post-hepatectomy liver insufficiency is one of the most serious postoperative problems and its prevention is important after major hepatic resection, especially in the cirrhotic liver. Some growth factors and cytokines appear to play important roles in liver regeneration. In the present study we have investigated the effects of granulocyte-macrophage colony-stimulating factor (GM-CSF) on hepatic regeneration after 70% partial hepatectomy (PH) in cirrhotic and non-cirrhotic rats. Methods A rat model of liver cirrhosis was prepared using thioacetamide (TAA) (a dose of 20 mg/100 g body w, intraperitoneally) on three days a week for 12 weeks. Adult male rats were divided into four groups:Group 1 (n = 10) no cirrhosis and no GM-CSF; Group 2 (n = 10) no cirrhosis and GM-CSF; Group 3 (n = 10) cirrhosis and no GM-CSF; and Group 4 (n = 10) cirrhosis and GM-CSF. All the rats underwent a 70% hepatectomy, and GM-CSF was administrated immediately after operation in Groups 2 and 4. On postoperative days 2 and 7, fresh samples from the remnant liver were obtained to evaluate its regenerative capacity. The liver regenerative process was estimated by DNA synthesis, using flow cytometry. Results Proliferation index (PI) of hepatocytes at 48 h was higher in Group 4 rats than Group 3 rats (p < 0.05). On post-operative day 7, PI was elevated in Group 3 rats compared with Group 4 rats, but this difference was not statistically significant. In non-cirrhotic rats given GM-CSF, PI was increased compared with Group 1 rats at day 2 (p < 0.05), but not at day 7. Conclusions The findings suggest that the proliferative capacity of liver cells is impaired and delayed after 70% PH in cirrhotic rat liver. GM-CSF administration might enhance the liver PI in both normal and TAA-induced cirrhotic rats. [source] |