Home About us Contact | |||
Paraxial Mesoderm (paraxial + mesoderm)
Selected AbstractsComparative expression pattern analysis of the highly conserved chemokines SDF1 and CXCL14 during amniote embryonic developmentDEVELOPMENTAL DYNAMICS, Issue 10 2010Clara García-Andrés Abstract Chemokines are secreted proteins with essential roles in leukocyte trafficking and cell migration during embryogenesis. CXCL14 displays a degree of evolutionary conservation unmatched by any other chemokine except for SDF1(CXCL12). However, its role during embryogenesis has not been studied. Here we describe the expression pattern of mouse and chicken CXCL14 during embryogenesis and compare it with that of SDF1. CXCL14 is widely expressed in embryonic ectoderm and shows a restricted and dynamic expression pattern in paraxial mesoderm, mesonephros, neural tube, and limbs. During limb development, CXCL14 marks a unique connective tissue subset that surrounds developing tendons. Comparison of CXCL14 and SDF1 reveals mostly non-overlapping or complementary expression patterns, suggesting an interactive regulation of developmental processes by these two chemokines. Our study identifies CXCL14 as a novel marker of tendon connective tissue and provides a conceptual framework for the coordinated action of two highly conserved chemokines in embryonic development. Developmental Dynamics 239:2769,2777, 2010. © 2010 Wiley-Liss, Inc. [source] Generation and characterization of a novel neural crest marker allele, Inka1-LacZ, reveals a role for Inka1 in mouse neural tube closureDEVELOPMENTAL DYNAMICS, Issue 4 2010Bethany S. Reid Abstract Previous studies identified Inka1 as a gene regulated by AP-2, in the neural crest required for craniofacial morphogenesis in fish and frog. Here, we extend the analysis of Inka1 function and regulation to the mouse by generating a LacZ knock-in allele. Inka1-LacZ allele expression occurs in the cephalic mesenchyme, heart, and paraxial mesoderm prior to E8.5. Subsequently, expression is observed in the migratory neural crest cells and their derivatives. Consistent with expression of Inka1 in tissues of the developing head during neurulation, a low percentage of Inka1,/, mice show exencephaly while the remainder are viable and fertile. Further studies indicate that AP-2, is not required for Inka1 expression in the mouse, and suggest that there is no significant genetic interaction between these two factors during embryogenesis. Together, these data demonstrate that while the expression domain of Inka1 is conserved among vertebrates, its function and regulation are not. Developmental Dynamics 239:1188,1196, 2010. © 2010 Wiley-Liss, Inc. [source] The role of FGF signaling in the establishment and maintenance of mesodermal gene expression in XenopusDEVELOPMENTAL DYNAMICS, Issue 5 2008Russell B. Fletcher Abstract FGF signaling is important for the formation of mesoderm in vertebrates, and when it is perturbed in Xenopus, most trunk and tail mesoderm fails to form. Here we have further dissected the activities of FGF in patterning the embryo by addressing its inductive and maintenance roles. We show that FGF signaling is necessary for the establishment of xbra expression in addition to its well-characterized role in maintaining xbra expression. The role of FGF signaling in organizer formation is not clear in Xenopus. We find that FGF signaling is essential for the initial specification of paraxial mesoderm but not for activation of several pan-mesodermal and most organizer genes; however, early FGF signaling is necessary for the maintenance of organizer gene expression into the neurula stage. Inhibition of FGF signaling prevents VegT activation of specific mesodermal transcripts. These findings illuminate how FGF signaling contributes to the establishment of distinct types of mesoderm. Developmental Dynamics 237:1243-1254, 2008. © 2008 Wiley-Liss, Inc. [source] Cloning of vertebrate Protogenin (Prtg) and comparative expression analysis during axis elongationDEVELOPMENTAL DYNAMICS, Issue 10 2006Christine Vesque Abstract A murine cDNA encoding Protogenin, which belongs to the DCC/Neogenin family, was cloned in a screen performed to identify novel cDNAs regionally expressed in the neural plate. Isolation of the putative zebrafish orthologues allowed a comparative analysis of the expression patterns of Protogenin genes during embryogenesis in different vertebrate species. From mid-gastrulation to early somite stages, Protogenin expression is restricted to posterior neural plate and mesoderm, with an anterior limit at the level of the rhombencephalon in mouse, chicken, and zebrafish. During somitogenesis, the expression profiles in the three species share features in the neural tube but present also species-specific characteristics. The initiation of Protogenin expression just before somitogenesis and its maintenance in the neural tube and paraxial mesoderm during this process suggest a conserved role in axis elongation. Developmental Dynamics 235:2836,2844, 2006. © 2006 Wiley-Liss, Inc. [source] Cloning and functional characterization of a novel connexin expressed in somites of Xenopus laevisDEVELOPMENTAL DYNAMICS, Issue 3 2005Teun P. De Boer Abstract Connexin-containing gap junctions play an essential role in vertebrate development. More than 20 connexin isoforms have been identified in mammals. However, the number identified in Xenopus trails with only six isoforms described. Here, identification of a new connexin isoform from Xenopus laevis is described. Connexin40.4 was found by screening expressed sequence tag databases and carrying out polymerase chain reaction on genomic DNA. This new connexin has limited amino acid identity with mammalian (<50%) connexins, but conservation is higher (,62%) with fish. During Xenopus laevis development, connexin40.4 was first expressed after the mid-blastula transition. There was prominent expression in the presomitic paraxial mesoderm and later in the developing somites. In adult frogs, expression was detected in kidney and stomach as well as in brain, heart, and skeletal muscle. Ectopic expression of connexin40.4 in HEK293 cells, resulted in formation of gap junction like structures at the cell interfaces. Similar ectopic expression in neural N2A cells resulted in functional electrical coupling, displaying mild, asymmetric voltage dependence. We thus cloned a novel connexin from Xenopus laevis, strongly expressed in developing somites, with no apparent orthologue in mammals. Developmental Dynamics 233:864,871, 2005. © 2005 Wiley-Liss, Inc. [source] Developmental analysis of activin-like kinase receptor-4 (ALK4) expression in Xenopus laevisDEVELOPMENTAL DYNAMICS, Issue 2 2005Yumei Chen Abstract The type I transforming growth factor-beta (TGF,) receptor, activin-like kinase-4 (ALK4), is an important regulator of vertebrate development, with roles in mesoderm induction, primitive streak formation, gastrulation, dorsoanterior patterning, and left,right axis determination. To complement previous ALK4 functional studies, we have analyzed ALK4 expression in embryos of the frog, Xenopus laevis. Results obtained with reverse transcriptase-polymerase chain reaction indicate that ALK4 is present in both the animal and vegetal poles of blastula stage embryos and that expression levels are relatively constant amongst embryos examined at blastula, gastrula, neurula, and early tail bud stages. However, the tissue distribution of ALK4 mRNA, as assessed by whole-mount in situ hybridization, was found to change over this range of developmental stages. In the blastula stage embryo, ALK4 is detected in cells of the animal pole and the marginal zone. During gastrulation, ALK4 is detected in the outer ectoderm, involuting mesoderm, blastocoele roof, dorsal lip, and to a lesser extent, in the endoderm. At the onset of neurulation, ALK4 expression is prominent in the dorsoanterior region of the developing head, the paraxial mesoderm, and midline structures, including the prechordal plate and neural folds. Expression in older neurula stage embryos resolves to the developing brain, somites, notochord, and neural crest; thereafter, additional sites of ALK4 expression in tail bud stage embryos include the spinal cord, otic placode, developing eye, lateral plate mesoderm, branchial arches, and the bilateral heart fields. Together, these results not only reflect the multiple developmental roles that have been proposed for this TGF, receptor but also define spatiotemporal windows in which ALK4 may function to modulate fundamental embryological events. Developmental Dynamics 232:393,398, 2005. © 2004 Wiley-Liss, Inc. [source] Xenopus paraxis homologue shows novel domains of expressionDEVELOPMENTAL DYNAMICS, Issue 3 2004Ronald Carpio Abstract The paraxis gene encodes a basic helix-loop-helix transcription factor that is expressed in paraxial mesoderm and whose mutant displays an inability to form epithelial somites. Here, the molecular characterization of Xenopus paraxis is reported. paraxis is expressed in the paraxial mesoderm and somites but is down-regulated during muscle differentiation. In addition to its paraxial mesodermal expression, described in other organisms, two novel expression domains of paraxis were found: the neural tube and the head mesoderm. paraxis expression in the neural tube was compared with the expression of the neural markers Xash and Xiro1, and we concluded that paraxis is expressed in a broad band in the prospective sulcus limitans of the neural tube. Developmental Dynamics 231:609,613, 2004. © 2004 Wiley-Liss, Inc. [source] An amphioxus winged helix/forkhead gene, AmphiFoxD: Insights into vertebrate neural crest evolutionDEVELOPMENTAL DYNAMICS, Issue 3 2002Jr-Kai Yu Abstract During amphioxus development, the neural plate is bordered by cells expressing many genes with homologs involved in vertebrate neural crest induction. However, these amphioxus cells evidently lack additional genetic programs for the cell delaminations, migrations, and differentiations characterizing definitive vertebrate neural crest. We characterize an amphioxus winged helix/forkhead gene (AmphiFoxD) closely related to vertebrate FoxD genes. Phylogenetic analysis indicates that the AmphiFoxD is basal to vertebrate FoxD1, FoxD2, FoxD3, FoxD4, and FoxD5. One of these vertebrate genes (FoxD3) consistently marks neural crest during development. Early in amphioxus development, AmphiFoxD is expressed medially in the anterior neural plate as well as in axial (notochordal) and paraxial mesoderm; later, the gene is expressed in the somites, notochord, cerebral vesicle (diencephalon), and hindgut endoderm. However, there is never any expression in cells bordering the neural plate. We speculate that an AmphiFoxD homolog in the common ancestor of amphioxus and vertebrates was involved in histogenic processes in the mesoderm (evagination and delamination of the somites and notochord); then, in the early vertebrates, descendant paralogs of this gene began functioning in the presumptive neural crest bordering the neural plate to help make possible the delaminations and cell migrations that characterize definitive vertebrate neural crest. © 2002 Wiley-Liss, Inc. [source] Expression of p27BBP/eIF6 is highly modulated during Xenopus laevis embryogenesisMOLECULAR REPRODUCTION & DEVELOPMENT, Issue 4 2006Maria Carmela Vaccaro Abstract Protein p27BBP/eIF6 is necessary for ribosomal function of all cells. Previous data showed that from mammals to yeast p27BBP/eIF6 is involved in the biogenesis of ribosomal subunit 60S and its association with the 60S prevents premature 80S formation regulated by PKC signaling, indicating that phosphorylation of p27BBP/eIF6 is needed for translation to occur. While in vitro p27BBP/eIF6 is constitutively expressed, and it has a high level of expression in cycling cells, in vivo its expression varies according to tissues and appears regulated by factors up to now unknown. p27BBP/eIF6 has never been investigated in developing organisms where its upregulation can be correlated with tissue growth and differentiation. In this study we have sequenced p27BBP/eIF6 cDNA and studied its expression during development of Xenopus laevis, as the first step for studying its regulation. The amino acid sequence is highly conserved with two putative PKC phosphorylation sites in serine, one site being typical of Xenopus. At the end of gastrulation, the p27BBP/eIF6 riboprobe localizes in the neural plate and in the paraxial mesoderm. In particular, from stage 24, a clear-cut localization occurs in the perspective head. In embryos exposed to teratogens, the localization of p27BBP/eIF6 riboprobe varies according to the change of head size caused by the treatment. p27BBP/eIF6 expression is particularly evident in differentiating olfactory pits, the lens, otic vesicles, and in branchial arches. Features of particular interest are p27BBP/eIF6 high level of expression in the eye field, and in the mid-hindbrain-boundary, two regions with high proliferative activity. Altogether, data indicate that a modulated expression of p27BBP/eIF6 occurs in developing anlagens in addition to a basal level of expression, and may suggest a correlation between p27BBP/eIF6 and proliferative activity. Moreover, the X. laevis cDNA isolation and characterization offer new hints for further studies in relation to potential p27BBP/eIF6 phosphorylation. Mol. Reprod. Dev. © 2006 Wiley-Liss, Inc. [source] |