Home About us Contact | |||
Parasympathetic Neurons (parasympathetic + neuron)
Selected AbstractsNerve growth factor expression in parasympathetic neurons: regulation by sympathetic innervationEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2000Wohaib Hasan Abstract Interactions between sympathetic and parasympathetic nerves are important in regulating visceral target function. Sympathetic nerves are closely apposed to, and form functional synapses with, parasympathetic axons in many effector organs. The molecular mechanisms responsible for these structural and functional interactions are unknown. We explored the possibility that Nerve Growth Factor (NGF) synthesis by parasympathetic neurons provides a mechanism by which sympathetic,parasympathetic interactions are established. Parasympathetic pterygopalatine ganglia NGF-gene expression was examined by in situ hybridization and protein content assessed by immunohistochemistry. Under control conditions, NGF mRNA was present in ,,60% and NGF protein was in 40% of pterygopalatine parasympathetic neurons. Peripheral parasympathetic axons identified by vesicular acetylcholine transporter-immunoreactivity also displayed NGF immunoreactivity. To determine if sympathetic innervation regulates parasympathetic NGF expression, the ipsilateral superior cervical ganglion was excised. Thirty days postsympathectomy, the numbers of NGF mRNA-positive neurons were decreased to 38% and NGF immunoreactive neurons to 15%. This reduction was due to a loss of sympathetic nerve impulse activity, as similar reductions were achieved when superior cervical ganglia were deprived of preganglionic afferent input for 40 days. These findings provide evidence that normally NGF is synthesized by parasympathetic neurons and transported anterogradely to fibre terminals, where it may be available to sympathetic axons. Parasympathetic NGF expression, in turn, is augmented by impulse activity within (and presumably transmitter release from) sympathetic axons. It is suggested that parasympathetic NGF synthesis and its modulation by sympathetic innervation provides a molecular basis for establishment and maintenance of autonomic axo-axonal synaptic interactions. [source] Protease-activated receptors: novel central role in modulation of gastric functionsNEUROGASTROENTEROLOGY & MOTILITY, Issue 4 2010K. N. Browning Abstract, Protease-activated receptors (PARs) are members of a subfamily of G-protein-coupled receptors that regulate diverse cell functions in response to proteolytic cleavage of an anchored peptide domain that acts as a ,tethered' receptor-activating ligand. PAR-1 and PAR-2 in particular are present throughout the gastrointestinal (GI) tract and play prominent roles in the regulation of GI epithelial function, motility, inflammation and nociception. In a recent article in Neurogastroenterology and Motility, Wang et al. demonstrate, for the first time, that PAR-1 and PAR-2 are present on preganglionic parasympathetic neurons within the rat brainstem. As in other cellular systems, proteases such as thrombin and trypsin activate PAR-1 and PAR-2 on neurons of the dorsal motor nucleus of the vagus (DMV), leading to an increase in intracellular calcium levels via signal transduction mechanisms involving activation of phospholipase C and inositol triphosphate (IP3). The authors also report that the level of PAR-1 and PAR-2 transcripts in DMV tissue is increased following experimental colitis, suggesting that inflammatory conditions may modulate neuronal behavior or induce plasticity within central vagal neurocircuits. It seems reasonable to hypothesize, therefore, that the activity and behavior of vagal efferent motoneurons may be modulated directly by local and/or systemic proteases released during inflammation. This, in turn, may contribute to the increased incidence of functional GI disorders, including gastric dysmotility, delayed emptying and gastritis observed in patients with inflammatory bowel diseases. [source] Preservation of segmental hindbrain organization in adult frogsTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 2 2006Hans Straka Abstract To test for possible retention of early segmental patterning throughout development, the cranial nerve efferent nuclei in adult ranid frogs were quantitatively mapped and compared with the segmental organization of these nuclei in larvae. Cranial nerve roots IV,X were labeled in larvae with fluorescent dextran amines. Each cranial nerve efferent nucleus resided in a characteristic segmental position within the clearly visible larval hindbrain rhombomeres (r). Trochlear motoneurons were located in r0, trigeminal motoneurons in r2,r3, facial branchiomotor and vestibuloacoustic efferent neurons in r4, abducens and facial parasympathetic neurons in r5, glossopharyngeal motoneurons in r6, and vagal efferent neurons in r7,r8 and rostral spinal cord. In adult frogs, biocytin labeling of cranial nerve roots IV,XII and spinal ventral root 2 in various combinations on both sides of the brain revealed precisely the same rostrocaudal sequence of efferent nuclei relative to each other as observed in larvae. This indicates that no longitudinal migratory rearrangement of hindbrain efferent neurons occurs. Although rhombomeres are not visible in adults, a segmental map of adult cranial nerve efferent nuclei can be inferred from the strict retention of the larval hindbrain pattern. Precise measurements of the borders of adjacent efferent nuclei within a coordinate system based on external landmarks were used to create a quantitative adult segmental map that mirrors the organization of the larval rhombomeric framework. Plotting morphologically and physiologically identified hindbrain neurons onto this map allows the physiological properties of adult hindbrain neurons to be linked with the underlying genetically specified segmental framework. J. Comp. Neurol. 494:228,245, 2006. © 2005 Wiley-Liss, Inc. [source] |