Home About us Contact | |||
Parasympathetic Innervation (parasympathetic + innervation)
Selected AbstractsIdentification and Characterization of Atrioventricular Parasympathetic Innervation in HumansJOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 8 2002KARA J. QUAN M.D. AV Parasympathetic Innervation.Introduction: We hypothesized that in humans there is an epicardial fat pad from which parasympathetic ganglia supply the AV node. We also hypothesized that the parasympathetic nerves innervating the AV node also innervate the right atrium, and the greatest density of innervation is near the AV nodal fat pad. Methods and Results: An epicardial fat pad near the junction of the left atrium and right inferior pulmonary vein was identified during cardiac surgery in seven patients. A ring electrode was used to stimulate this fat pad intraoperatively during sinus rhythm to produce transient complete heart block. Subsequently, temporary epicardial wire electrodes were sutured in pairs on this epicardial fat pad, the high right atrium, and the right ventricle by direct visualization during coronary artery bypass surgery in seven patients. Experiments were performed in the electrophysiology laboratory 1 to 5 days after surgery. Programmed atrial stimulation was performed via an endocardial electrode catheter advanced to the right atrium. The catheter tip electrode was moved in 1-cm concentric zones around the epicardial wires by fluoroscopic guidance. Atrial refractoriness at each catheter site was determined in the presence and absence of parasympathetic nerve stimulation (via the epicardial wires). In all seven patients, an AV nodal fat pad was identified. Fat pad stimulation during and after surgery caused complete heart block but no change in sinus rate. Fat pad stimulation decreased the right atrial effective refractory period at 1 cm (280 ± 42 msec to 242 ± 39 msec) and 2 cm (235 ± 21 msec to 201 ± 11 msec) from the fat pad (P = 0.04, compared with baseline). No significant change in atrial refractoriness occurred at distances > 2 cm. The response to stimulation decreased as the distance from the fat pad increased. Conclusion: For the first time in humans, an epicardial fat pad was identified from which parasympathetic nerve fibers selectively innervate the AV node but not the sinoatrial node. Nerves in this fat pad also innervate the surrounding right atrium. [source] Cells migrating from the neural crest contribute to the innervation of the venous pole of the heartJOURNAL OF ANATOMY, Issue 1 2008Victoria Hildreth Abstract Cells migrating from the neural crest are known to septate the outflow tract of the developing heart, and to contribute to the formation of the arterial valves, their supporting sinuses, the coronary arteries and cardiac neural ganglia. Neural crest cells have also been suggested to contribute to development of the venous pole of the heart, but the extent and fate of such cells remains unclear. In this study, in the mouse, it is shown that cells from the neural crest contribute to the parasympathetic and, to a lesser extent, the sympathetic innervation of the venous pole of the heart. Nerves within the venous pole of the heart are shown to be of mixed origin, with some being derived from the neural crest, while others have an alternative origin, presumably placodal. The neurons innervating the nodal tissue, which can exert chronotropic effects on cardiac conduction, are shown not to be derived from the neural crest. In particular, no evidence was found to support previous suggestions that cells from the neural crest make a direct contribution to the myocardial atrioventricular conduction axis, although a small subset of these cells do co-localize with the developing left bundle branch. We have therefore confirmed that cells from the neural crest migrate to the venous pole of the heart, and that their major role is in the development of the parasympathetic innervation. In addition, in some embryos, a population of cells derived from the neural crest persist in the leaflets of the atrioventricular valves, but their role in subsequent development remains unknown. [source] White Adipose Tissue: Getting NervousJOURNAL OF NEUROENDOCRINOLOGY, Issue 11 2003E. Fliers Abstract Neuroendocrine research has altered the traditional perspective of white adipose tissue (WAT) as a passive store of triglycerides. In addition to fatty acids, WAT produces many hormones and can therefore be designated as a traditional endocrine gland actively participating in the integrative physiology of fuel and energy metabolism, eating behaviour and the regulation of hormone secretion and sensitivity. WAT is controlled by humoral factors, para- and intracrine factors and by neural regulation. Sympathetic nerve fibres innervate WAT and stimulate lipolysis, leading to the release of glycerol and free fatty acids. In addition, recent research in rats has clearly shown a functional parasympathetic innervation of WAT. There appears to be a distinct somatotopy within the parasympathetic nuclei: separate sets of autonomic neurones in the brain stem innervate either the visceral or the subcutaneous fat compartment. We therefore propose that the central nervous system (CNS) plays a major role in the hitherto unexplained regulation of body fat distribution. Parasympathectomy induces insulin resistance with respect to glucose and fatty acid uptake in the innervated fat depot and has selective effects on local hormone synthesis. Thus, the CNS is involved not only in the regulation of hormone production by WAT, but also in its hormone sensitivity. The developments in this research area are likely to increase our insights in the pathogenesis of metabolic disorders such as hypertriglyceridemia, diabetes mellitus type 2 and lipodystrophy syndromes. [source] Effect of ,-adrenoceptor antagonists on autonomic control of ciliary smooth muscleOPHTHALMIC AND PHYSIOLOGICAL OPTICS, Issue 5 2002Barry Winn Abstract Purpose: Pharmacological intervention with peripheral sympathetic transmission at ciliary smooth muscle neuro-receptor junctions has been used against a background of controlled parasympathetic activity to investigate the characteristics of autonomic control of ocular accommodation. Methods: A continuously recording infra-red optometer was used to measure accommodation on a group of five visually normal emmetropic subjects under open- and closed-loop conditions. A double-blind protocol between saline, timolol and betaxolol was used to differentiate between the localised action on ciliary smooth muscle and effects induced by changes in stimulus conditions. Data were collected before and 45 min following the instillation of saline, timolol or betaxolol. Open-loop post-task decay was investigated following 3 min sustained near fixation of a stimulus placed 3 D above the subject's pre-task tonic accommodation level. Closed-loop dynamic responses were recorded for each treatment condition while subjects viewed sinusoidally (0.05,0.6 Hz) or stepwise vergence-modulated targets over a 2 D range (2,4 D). Results: Open-loop data demonstrate a rapid post-task regression to pre-task tonic accommodation levels for saline and betaxolol control conditions. A slow positive post-task shift was induced by timolol indicating that sympathetic inhibition contributes to accommodative adaptation during sustained near vision. Closed-loop accommodation responses to temporally modulated sinusoidal stimuli showed characteristic features for both saline and betaxolol control conditions. Timolol induced a reduced gain for low- and mid-temporal frequencies (< 0.3 Hz) but did not affect the response at higher temporal frequencies. Response times to stepwise stimuli increased following the instillation of timolol for the near-to-far fixation condition compared with the controls and was related to the period of sustained prior fixation. Conclusions: Modulation of accommodation under open- and closed-loop conditions by a non-selective ,-blocker is consistent with the temporal and inhibitory features of sympathetic innervation to ciliary smooth muscle. Although parasympathetic innervation predominates there is evidence to support a role for sympathetic innervation in the control of ocular accommodation. [source] |