Home About us Contact | |||
Parasitoid Interaction (parasitoid + interaction)
Selected AbstractsConsequences for a host,parasitoid interaction of host-plant aggregation, isolation, and phenologyECOLOGICAL ENTOMOLOGY, Issue 4 2007ADAM J. VANBERGEN Abstract 1.,Spatial habitat structure can influence the likelihood of patch colonisation by dispersing individuals, and this likelihood may differ according to trophic position, potentially leading to a refuge from parasitism for hosts. 2.,Whether habitat patch size, isolation, and host-plant heterogeneity differentially affected host and parasitoid abundance, and parasitism rates was tested using a tri-trophic thistle,herbivore,parasitoid system. 3.,Cirsium palustre thistles (n= 240) were transplanted in 24 blocks replicated in two sites, creating a range of habitat patch sizes at increasing distance from a pre-existing source population. Plant architecture and phenological stage were measured for each plant and the numbers of the herbivore Tephritis conura and parasitoid Pteromalus elevatus recorded. 4.,Mean herbivore numbers per plant increased with host-plant density per patch, but parasitoid numbers and parasitism rates were unaffected. Patch distance from the source population did not influence insect abundance or parasitism rates. Parasitoid abundance was positively correlated with host insect number, and parasitism rates were negatively density dependent. Host-plant phenological stage was positively correlated with herbivore and parasitoid abundance, and parasitism rates at both patch and host-plant scales. 5.,The differential response between herbivore and parasitoid to host-plant density did not lead to a spatial refuge but may have contributed to the observed parasitism rates being negatively density dependent. Heterogeneity in patch quality, mediated by variation in host-plant phenology, was more important than spatial habitat structure for both the herbivore and parasitoid populations, and for parasitism rates. [source] Gall size determines the structure of the Rabdophaga strobiloides host,parasitoid communityECOLOGICAL ENTOMOLOGY, Issue 5 2003Brian H. Van Hezewijk Abstract., 1.,The relationship between gall size and mortality of the willow pinecone gall midge Rabdophaga strobiloides (Diptera: Cecidomyiidae) was examined by determining the fate of all galls in a 30-ha area in central Alberta, Canada over 4 years. It was found that gall size has a large effect on the type and intensity of mortality experienced by the gall midge, and consequently this factor has the potential to influence the dynamics of the host,parasitoid interaction through the creation of phenotypic refuges. 2.,Total midge mortality ranged from 51% to 78% over the course of the study and was dominated by parasitism by Torymus cecidomyiae (Hymenoptera: Torymidae) and Gastrancistrus sp. (Hymenoptera: Pteromalidae) as well as predation by birds. Gall size had a strong, non-linear effect on the attack rates of each of these natural enemies. 3.,Birds attacked the smallest size classes. Torymus cecidomyiae preferentially attacked medium diameter galls and thus avoided predation by birds in smaller galls. Gastrancistrus sp. preferentially attacked the largest galls and consequently suffered lower rates of predation by both T. cecidomyiae and birds. 4.,This study emphasises the importance of understanding the interactions among mortality factors in order to describe adequately the susceptibility of R. strobiloides to parasitism and predation, and ultimately its population dynamics. [source] The role of resources and natural enemies in determining the distribution of an insect herbivore populationECOLOGICAL ENTOMOLOGY, Issue 2 2001Iain S. Williams Summary 1. Both resources and natural enemies can influence the distribution of a herbivore. The ideal free distribution predicts that herbivores distribute themselves to optimise utilisation of resources. There is also evidence of herbivores seeking out refuges that reduce natural enemy attack (enemy-free space). Which of these theories predominates in a thistle,tephritid Terellia ruficauda (Diptera: Tephritidae),parasitoid interaction is examined. 2. The plant, Cirsium palustre, had a contagious distribution approximated by the negative binomial distribution. Terellia ruficauda foraged preferentially and oviposited on isolated plants although its larvae gained neither nutritional benefit nor reduced natural enemy pressure from such behaviour. 3. Parasitoids of T. ruficauda foraged and oviposited more frequently on isolated than on crowded T. ruficauda, resulting in inverse density-dependent parasitoid attack at all spatial scales examined. Neither the herbivore nor natural enemies distributed themselves according to the predictions of the ideal free distribution and the herbivore did not oviposit to reduce natural enemy attack. 4. Extrapolating from the theoretical predictions of the ideal free distribution and enemy-free space to the field requires considerable caution. Terellia ruficauda and its parasitoids appear to select their oviposition sites to spread the risk of losses through factors (e.g. mammal herbivory) that may damage dense clusters of C. palustre. [source] Can vertebrate predation alter aggregation of risk in an insect host,parasitoid system?JOURNAL OF ANIMAL ECOLOGY, Issue 3 2002William F. Fagan Summary 1,Insect host,parasite systems allow investigations of the trophodynamics of ecological communities within a well-formed theoretical context. A little explored feature of such systems involves the interplay between generalized consumers and host,parasitoid dynamics. I report a study investigating how the impacts of generalized consumers, viewed here as interaction modifications, may influence the stability of a particular interspecific interaction. 2,In a study involving overwintering oothecae of the praying mantis Stagmomantis limbata (Hahn), birds damaged 36% of oothecae, 85% of which had also been parasitized by winter-active, multivoltine torymid wasps of the genus Podagrion. Birds preferentially preyed upon oothecae oviposited high on trees, but such predation was often incomplete, leaving both viable and parasitized mantid eggs inside damaged oothecae. 3,Two factors allowed bird damage to influence the distribution of risk of parasitism among oothecae and among hosts. These were (1) that some parasites , but no mantids , emerged successfully prior to bird predation and (2) that extensive post-damage foraging by parasitoids occurred, but that the nature of this foraging was altered little by oothecal damage. 4,In all, bird damage engendered a fourfold increase (from 1·5 to 6·5) in the CV2 of parasitism risk among hosts (a stability criterion that has been proposed for host,parasitoid interactions) and increased the relative importance of host-density-dependent parasitism. The role of timing of the two natural enemy impacts for stability of the host,parasitoid interaction is discussed. [source] Ample genetic variation but no evidence for genotype specificity in an all-parthenogenetic host,parasitoid interactionJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 3 2010C. SANDROCK Abstract Antagonistic coevolution between hosts and parasites can result in negative frequency-dependent selection and may thus be an important mechanism maintaining genetic variation in populations. Negative frequency-dependence emerges readily if interactions between hosts and parasites are genotype-specific such that no host genotype is most resistant to all parasite genotypes, and no parasite genotype is most infective on all hosts. Although there is increasing evidence for genotype specificity in interactions between hosts and pathogens or microparasites, the picture is less clear for insect host,parasitoid interactions. Here, we addressed this question in the black bean aphid (Aphis fabae) and its most important parasitoid Lysiphlebus fabarum. Because both antagonists are capable of parthenogenetic reproduction, this system allows for powerful tests of genotype × genotype interactions. Our test consisted of exposing multiple host clones to different parthenogenetic lines of parasitoids in all combinations, and this experiment was repeated with animals from four different sites. All aphids were free of endosymbiotic bacteria known to increase resistance to parasitoids. We observed ample genetic variation for host resistance and parasitoid infectivity, but there was no significant host clone × parasitoid line interaction, and this result was consistent across the four sites. Thus, there is no evidence for genotype specificity in the interaction between A. fabae and L. fabarum, suggesting that the observed variation is based on rather general mechanisms of defence and attack. [source] Two homologous parasitism-specific proteins encoded in Cotesia plutellae bracovirus and their expression profiles in parasitized Plutella xylostellaARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY (ELECTRONIC), Issue 4 2008Sunyoung Lee Abstract A wasp, Cotesia plutellae, parasitizes the diamondback moth, Plutella xylostella, and interrupts host physiology for wasp survival and development. Identification of parasitism-specific factors would be helpful to understand the host,parasitoid interaction. This study focused on identification of a 15-kDa protein found only in plasma of the parasitized P. xylostella. Degenerate primers were designed after N-terminal amino acid sequencing of the parasitism-specific protein and used to clone the corresponding gene from the parasitized P. xylostella by a nested reverse transcriptase-polymerase chain reaction (RT-PCR). Two homologous genes were cloned and identified as "CpBV15," and "CpBV15,," respectively, due to the identical size (158 amino acid residues) of the predicted open reading frames, in which they shared amino acid sequences in both terminal regions, but varied in internal sequences. Southern hybridization analysis indicated that both genes were located on C. plutellae bracovirus genome. Real-time quantitative RT-PCR revealed that both genes were mostly expressed at the late parasitization period, which was further confirmed by an immunoblotting assay using CpBV15 antibody. A recombinant CpBV15 protein was produced from Sf9 cells via a baculovirus expression system. The purified CpBV15 protein could enter hemocytes of P. xylostella and were localized in the cytosol. Along with the sequence similarities of CpBV15s with eukaryotic initiation factors, their putative biological role has been discussed in terms of the host translation inhibitory factor. Arch. Insect Biochem. Physiol. 67:157,171, 2008. © 2008 Wiley-Liss, Inc. [source] Host age and fitness-related traits in a koinobiont aphid parasitoidECOLOGICAL ENTOMOLOGY, Issue 4 2005H. Colinet Abstract., 1.,Trade-offs play a key role in species evolution and should be found in host,parasitoid interactions where the host quality may differ between host age categories. 2.,The braconid wasp, Aphidius ervi, is a solitary endoparasitoid that allows its aphid hosts to continue to feed and grow after parasitisation. The hypotheses that host age influences their quality and that female parasitoids exploit their hosts based on that quality were tested under laboratory conditions using no-choice tests. 3.,Aphidius ervi females accepted the aphid Myzus persicae for oviposition and their progeny developed successfully in all host ages. The fitness-related traits of parasitoids did not increase linearly with the host age in which they developed. Host quality was found to be optimal at intermediate host ages and the females preferred to parasitise these hosts. The shortest progeny development time and a more female-biased sex ratio were observed in hosts of intermediate age. 4.,This study suggests the existence of multiple interactive trade-offs occurring during host,parasitoid interactions according to host age related quality. [source] Time allocation of a parasitoid foraging in heterogeneous vegetation: implications for host,parasitoid interactionsJOURNAL OF ANIMAL ECOLOGY, Issue 5 2007TIBOR BUKOVINSZKY Summary 1Changing plant composition in a community can have profound consequences for herbivore and parasitoid population dynamics. To understand such effects, studies are needed that unravel the underlying behavioural decisions determining the responses of parasitoids to complex habitats. 2The searching behaviour of the parasitoid Diadegma semiclausum was followed in environments with different plant species composition. In the middle of these environments, two Brassica oleracea plants infested by the host Plutella xylostella were placed. The control set-up contained B. oleracea plants only. In the more complex set-ups, B. oleracea plants were interspersed by either Sinapis alba or Hordeum vulgare. 3Parasitoids did not find the first host-infested plant with the same speed in the different environments. Sinapis alba plants were preferentially searched by parasitoids, resulting in fewer initial host encounters, possibly creating a dynamic enemy-free space for the host on adjacent B. oleracea plants. In set-ups with H. vulgare, also, fewer initial host encounters were found, but in this case plant structure was more likely than infochemicals to interfere with the searching behaviour of parasitoids. 4On discovering a host-infested plant, parasitoids located the second host-infested plant with equal speed, demonstrating the effect of experience on time allocation. Further encounters with host-infested plants that had already been visited decreased residence times and increased the tendency to leave the environment. 5Due to the intensive search of S. alba plants, hosts were encountered at lower rates here than in the other set-ups. However, because parasitoids left the set-up with S. alba last, the same number of hosts were encountered as in the other treatments. 6Plant composition of a community influences the distribution of parasitoid attacks via its effects on arrival and leaving tendencies. Foraging experiences can reduce or increase the importance of enemy-free space for hosts on less attractive plants. [source] Can vertebrate predation alter aggregation of risk in an insect host,parasitoid system?JOURNAL OF ANIMAL ECOLOGY, Issue 3 2002William F. Fagan Summary 1,Insect host,parasite systems allow investigations of the trophodynamics of ecological communities within a well-formed theoretical context. A little explored feature of such systems involves the interplay between generalized consumers and host,parasitoid dynamics. I report a study investigating how the impacts of generalized consumers, viewed here as interaction modifications, may influence the stability of a particular interspecific interaction. 2,In a study involving overwintering oothecae of the praying mantis Stagmomantis limbata (Hahn), birds damaged 36% of oothecae, 85% of which had also been parasitized by winter-active, multivoltine torymid wasps of the genus Podagrion. Birds preferentially preyed upon oothecae oviposited high on trees, but such predation was often incomplete, leaving both viable and parasitized mantid eggs inside damaged oothecae. 3,Two factors allowed bird damage to influence the distribution of risk of parasitism among oothecae and among hosts. These were (1) that some parasites , but no mantids , emerged successfully prior to bird predation and (2) that extensive post-damage foraging by parasitoids occurred, but that the nature of this foraging was altered little by oothecal damage. 4,In all, bird damage engendered a fourfold increase (from 1·5 to 6·5) in the CV2 of parasitism risk among hosts (a stability criterion that has been proposed for host,parasitoid interactions) and increased the relative importance of host-density-dependent parasitism. The role of timing of the two natural enemy impacts for stability of the host,parasitoid interaction is discussed. [source] Ample genetic variation but no evidence for genotype specificity in an all-parthenogenetic host,parasitoid interactionJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 3 2010C. SANDROCK Abstract Antagonistic coevolution between hosts and parasites can result in negative frequency-dependent selection and may thus be an important mechanism maintaining genetic variation in populations. Negative frequency-dependence emerges readily if interactions between hosts and parasites are genotype-specific such that no host genotype is most resistant to all parasite genotypes, and no parasite genotype is most infective on all hosts. Although there is increasing evidence for genotype specificity in interactions between hosts and pathogens or microparasites, the picture is less clear for insect host,parasitoid interactions. Here, we addressed this question in the black bean aphid (Aphis fabae) and its most important parasitoid Lysiphlebus fabarum. Because both antagonists are capable of parthenogenetic reproduction, this system allows for powerful tests of genotype × genotype interactions. Our test consisted of exposing multiple host clones to different parthenogenetic lines of parasitoids in all combinations, and this experiment was repeated with animals from four different sites. All aphids were free of endosymbiotic bacteria known to increase resistance to parasitoids. We observed ample genetic variation for host resistance and parasitoid infectivity, but there was no significant host clone × parasitoid line interaction, and this result was consistent across the four sites. Thus, there is no evidence for genotype specificity in the interaction between A. fabae and L. fabarum, suggesting that the observed variation is based on rather general mechanisms of defence and attack. [source] |