Home About us Contact | |||
Parasite Surface (parasite + surface)
Selected AbstractsCathepsin L occupies a vacuolar compartment and is a protein maturase within the endo/exocytic system of Toxoplasma gondiiMOLECULAR MICROBIOLOGY, Issue 6 2010Fabiola Parussini Summary Regulated exocytosis allows the timely delivery of proteins and other macromolecules precisely when they are needed to fulfil their functions. The intracellular parasite Toxoplasma gondii has one of the most extensive regulated exocytic systems among all unicellular organisms, yet the basis of protein trafficking and proteolytic modification in this system is poorly understood. We demonstrate that a parasite cathepsin protease, TgCPL, occupies a newly recognized vacuolar compartment (VAC) that undergoes dynamic fragmentation during T. gondii replication. We also provide evidence that within the VAC or late endosome this protease mediates the proteolytic maturation of proproteins targeted to micronemes, regulated secretory organelles that deliver adhesive proteins to the parasite surface during cell invasion. Our findings suggest that processing of microneme precursors occurs within intermediate endocytic compartments within the exocytic system, indicating an extensive convergence of the endocytic and exocytic pathways in this human parasite. [source] Immunoglobulin uptake and processing by Schistosoma mansoniPARASITE IMMUNOLOGY, Issue 9 2006C. THORS SUMMARY Intravascular Schistosoma mansoni worms seem to take up immunoglobulins from blood by surface Fc-receptors, but the process whereby bound immunoglobulins are processed by the parasite is poorly understood. We here present morphological data suggesting that two distinct main processes are involved: Host immunoglobulins were seen at two distinct locations in the parasite: in the frontal part of the enteric tube, the oesophagus, and as a fine granular staining at the surface and in the subtegumental region. The latter staining pattern corresponds to host immunoglobulin localization in discrete organelle-like aggregates tentatively identified as ,discoid or elongate bodies' at the ultrastructural level using immunogold staining. Immunoglobulin uptake by intravascular worms was also demonstrated in vivo after passive administration of 125I-labelled rabbit and mouse immunoglobulins. Radiolabelled immunoglobulins were taken up by the worms and shown to localize as fine strands running perpendicular to the parasite surface. Our results suggest that intravascular schistosomes take up host immunoglobulins both as part of their enteric digestion and by a surface Fc-receptor-mediated mechanism, involving transport and processing within organelles, ,elongate bodies'. Immunoglobulins taken up by intravascular schistosomes form a distinct organelle-like granules, which seem to be processed within the excretory system of the parasite. [source] Secretion of IL-12 by murine macrophages activated by immunoglobulin receptor-mediated internalization of the surface coat of Trichinella spiralis larvaePARASITE IMMUNOLOGY, Issue 3 2000Modha Trichinella spiralis larvae incubated with a rabbit antiserum raised against the larval surface coat bound murine macrophages to the parasite surface. Cell binding was not observed without the antisurface coat serum, or with incubation of larvae in normal rabbit serum, or with antibodies to keyhole limpet haemocyanin which identify a cryptic T. spiralis larval antigen. Cell adherence to the larval surface was lost by treatment of the cells with the lysosomotropic drug primaquine, implicating a receptor-mediated mechanism. Cells adhering to the parasite surface internalized parasite surface coat material, which was subsequently concentrated into endosomes. Culture supernatants from these cells contained enhanced levels of IL-12. Thus, the initial Th1 response to T. spiralis infection may be explained by these data. [source] The tegument surface membranes of the human blood parasite Schistosoma mansoni: A proteomic analysis after differential extractionPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 5 2006Simon Braschi Abstract The blood fluke Schistosoma mansoni can live for years in the hepatic portal system of its human host and so must possess very effective mechanisms of immune evasion. The key to understanding how these operate lies in defining the molecular organisation of the exposed parasite surface. The adult worm is covered by a syncytial tegument, bounded externally by a plasma membrane and overlain by a laminate secretion, the membranocalyx. In order to determine the protein composition of this surface, the membranes were detached using a freeze/thaw technique and enriched by sucrose density gradient centrifugation. The resulting preparation was sequentially extracted with three reagents of increasing solubilising power. The extracts were separated by 2-DE and their protein constituents were identified by MS/MS, yielding predominantly cytosolic, cytoskeletal and membrane-associated proteins, respectively. After extraction, the final pellet containing membrane-spanning proteins was processed by liquid chromatographic techniques before MS. Transporters for sugars, amino acids, ions and other solutes were found together with membrane enzymes and proteins concerned with membrane structure. The proteins identified were categorised by their function and putative location on the basis of their homology with annotated proteins in other organisms. [source] Transepithelial migration of Toxoplasma gondii involves an interaction of intercellular adhesion molecule 1 (ICAM-1) with the parasite adhesin MIC2CELLULAR MICROBIOLOGY, Issue 4 2005Antonio Barragan Summary Toxoplasma gondii crosses non-permissive biological barriers such as the intestine, the blood,brain barrier and the placenta thereby gaining access to tissues where it most commonly causes severe pathology. Herein we show that in the process of migration Toxoplasma initially concentrates around intercellular junctions and probably uses a paracellular pathway to transmigrate across biological barriers. Parasite transmigration required viable and actively motile parasites. Interestingly, the integrity of host cell barriers was not altered during parasite transmigration. As intercellular adhesion molecule 1 (ICAM-1) is upregulated on cellular barriers during Toxoplasma infection, we investigated the role of this receptor in parasite transmigration. Soluble human ICAM-1 and ICAM-1 antibodies inhibited transmigration of parasites across cellular barriers implicating this receptor in the process of transmigration. Furthermore, human ICAM-1 immunoprecipitated the mature form of the parasite adhesin MIC2 present on the parasite surface, indicating that this interaction may contribute to cellular migration. These findings reveal that Toxoplasma exploits the natural cell trafficking pathways in the host to cross cellular barriers and disseminate to deep tissues. [source] Leishmania donovani infection down-regulates TLR2-stimulated IL-12p40 and activates IL-10 in cells of macrophage/monocytic lineage by modulating MAPK pathways through a contact-dependent mechanismCLINICAL & EXPERIMENTAL IMMUNOLOGY, Issue 2 2008Dinesh Chandra Summary The failure of Leishmania, an intracellular pathogen, to stimulate a pro-inflammatory response following entry into macrophages has been well reported. This occurs in spite of the fact that ligands for the toll-like receptors (TLR) have been recently shown on the parasite surface and their role in disease protection well documented. The outcome of infection in leishmaniasis is determined by the Th1 versus Th2 nature of the effector response and the generation of IL-12 and IL-10 by the infected macrophages is important for this decision. We evaluated the effect of L. donovani infection of monocytes (cell line THP-1, and monocytes derived from human peripheral blood) on Pam3cys (TLR2 ligand) and lipopolysaccharide (TLR4 ligand) stimulated production of IL-12p40 and IL-10. L. donovani infection caused suppression of TLR2 and TLR4-stimulated IL-12p40, with an increase in IL-10 production. Parasites also modulated the TLR2-stimulated mitogen-activated protein kinase (MAPK) pathway by suppressing MAPK P38 phosphorylation and activating extracellular regulated kinase (ERK)1/2 phosphorylation. These effects could be reversed either by using a MAPK P38 activator, anisomycin, or ERK1/2 inhibitor, U0126. L. donovani caused modulation of TLR2-stimulated MAPK pathways in a contact-dependent mechanism. In addition parasite structural integrity but not viability was required for suppression of TLR2-stimulated IL-12p40 and activation of IL-10. These observations suggest that L. donovani has evolved survival strategies that subvert the pro-inflammatory response generated through TLRs. [source] |